
Oracle9iAS TopLink

CMP for Users of IBM WebSphere Server Guide

Release 2 (9.0.3)

August 2002

Part No. B10067-01

Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide, Release 2 (9.0.3)

Part No. B10067-01

Copyright © 2002, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments ... ix

Preface.. xi

1 Introduction

TopLink Container-Managed Persistence.. 1-1
TopLink for Java.. 1-2
TopLink Mapping Workbench ... 1-2
Understanding container-managed persistence ... 1-3

Enterprise JavaBeans (EJBs) .. 1-3
Terminology and definitions ... 1-3

Java objects and Entity Beans.. 1-4

2 Mapping Entity Beans

Using TopLink Mapping Workbench ... 2-1
Mappings.. 2-1

Creating mappings ... 2-2
Direct mappings ... 2-2
Relationship mappings .. 2-3

Mappings between entity beans.. 2-3
Mappings between entity beans and Java objects .. 2-3
One-to-one mappings ... 2-4

iv

One-to-many mappings.. 2-4
Many-to-many mappings... 2-5
Aggregate object mappings ... 2-5
Aggregate collection mappings... 2-6

Sequencing with Entity Beans ... 2-6
Adding sequencing outside of the TopLink Mapping Workbench 2-7

Inheritance.. 2-7
Indirection .. 2-8

3 Configuring TopLink Container-Managed Persistence

Software requirements... 3-1
A note about the WebSphere Module Visibility setting ... 3-2

Configuring TopLink CMP ... 3-3
Testing your TopLink installation ... 3-4

Testing TopLink deployment tool.. 3-5
Testing TopLink Container-Managed Persistence with entity beans 3-6
Running the Server with TopLink.. 3-6

4 EJB Entity Bean Deployment

Overview of deployment... 4-1
Understanding Deployment ... 4-1
Requirements before deployment .. 4-2

Assemble the entity beans into a .jar or .ear file.. 4-2
Configuring entity bean deployment descriptors .. 4-2
 Preparing for deployment .. 4-3

Running the Deployment Tool ... 4-4
Running the command line Deployment Tool.. 4-4
Running the graphic Deployment tool... 4-4
Using Deploy Tool with WebSphere Studio Application Developer (WSAD) 4-6

Troubleshooting.. 4-7
Deploying a TopLink-Deployed EJB JAR ... 4-7
Starting the entity bean .. 4-8
Running an EJB Client.. 4-8

v

5 Defining and Executing Queries

Using Finder Libraries ... 5-1
NAMED finders.. 5-1

Creating NAMED finders .. 5-2
Defining “named” TopLink queries ... 5-2
Using the TopLink expression framework .. 5-3
Using the generic NAMED finder .. 5-4

CALL finders... 5-4
Creating CALL finders ... 5-5
Executing a CALL finder.. 5-5

EXPRESSION finders ... 5-5
Creating EXPRESSION finders ... 5-6
Executing an EXPRESSION finder ... 5-6

EJBQL finders.. 5-6
Advantages ... 5-6
Disadvantages... 5-6

Creating an EJBQL finder... 5-7
READALL finders .. 5-7

Creating READALL finders... 5-7
Executing a READALL finder ... 5-7

Advanced finder options... 5-8
Caching options .. 5-8
Disabling caching of returned finder results .. 5-9
Refreshing finder results ... 5-9

6 Run time considerations

Transaction support .. 6-1
TopLink within the IBM WebSphere Server .. 6-1
When updates occur... 6-2
Valid transactional states... 6-2

Maintaining bidirectional relationships .. 6-3
One-to-Many relationship ... 6-3

Managing dependent objects ... 6-4
Serializing Java objects between client and server .. 6-4

Managing collections of EJBObjects... 6-4

vi

7 Customization

Customizing TopLink descriptors and mappings .. 7-1
Creating projects and TopLink descriptors in Java ... 7-2
Customizing TopLink descriptors with amendment methods.. 7-4

Working with TopLink ServerSession and Login .. 7-5
Understanding ServerSession ... 7-5
Understanding DatabaseLogin... 7-5
Customizing ServerSession and DatabaseLogin.. 7-5
Additional configuration changes.. 7-6

8 The Single Bean Example Application

Understanding the Single Bean example ... 8-1
The Object model .. 8-2

The interface ... 8-2
The class .. 8-2
The home interface .. 8-3

Database schema... 8-3
Entity Development ... 8-3

Create the interfaces ... 8-4
Create and implement the bean classes... 8-4
Create the deployment descriptors .. 8-4

The TopLink deployment descriptor: toplink-ejb-jar.xml... 8-4
Map the entities to the database ... 8-5

Creating a TopLink project .. 8-6
Generate code for deployment ... 8-8
Deploy the EAR file .. 8-8
Run the client... 8-9

A EJB Architectures Summary

Introduction to EJB architectures ... A-2
Remote Entities ... A-2
Remote Session beans... A-3
Session Façade - Combining Session and Entity beans... A-5

vii

Dependent Java Objects .. A-6
Conclusion ... A-7

B The toplink-ejb-jar DTD

DTD listing .. B-1

Index

viii

ix

Send Us Your Comments

Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide, Release 2 (9.0.3)

Part No. B10067-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

� Electronic mail: iasdocs_us@oracle.com
� FAX: 650-506-7407 Attn: Oracle9i Application Server Documentation Manager
� Postal service:

Oracle Corporation
Oracle9i Application Server Documentation
500 Oracle Parkway, M/S 2op3
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

x

xi

Preface

This section introduces the information you need to get the most out of the
documentation that accompanies your software. This preface contains these topics:

� Intended Audience

� Documentation Accessibility

� Structure

� Related Documents

� Conventions

Intended Audience
This document is intended for application developers who perform the following
tasks:

� Application design and development

� Application testing and benchmarking

� Application integration

This document assumes that you are familiar with the concepts of object-oriented
programming, the Enterprise JavaBeans (EJB) specification, and with your own
particular Java development environment.

The document also assumes that you are familiar with your particular operating
system (Windows, UNIX, or other). The general operation of any operating system
is described in the user documentation for that system, and is not repeated in this
manual.

xii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Structure
This document contains:

Chapter 1, "Introduction"
This chapter provides an overview of the TopLink and CMP concepts that enable
you to fully-leverage TopLink CMP.

Chapter 2, "Mapping Entity Beans"
This chapter describes how to map container-managed entity beans using the object
mapping features of TopLink for Java. Instructions and hints for using direct and
relationship mappings in an EJB context are provided, and differences between
beans and regular Java objects are outlined.

xiii

Chapter 3, "Configuring TopLink Container-Managed Persistence"
This chapter describes the configuration and testing of TopLink Container-Managed
Persistence.

Chapter 4, "EJB Entity Bean Deployment"
This chapter describes how to deploy beans within the application server.

Chapter 5, "Defining and Executing Queries"
This chapter describes the TopLink support for creating and customizing finders.

Chapter 6, "Run time considerations"
This chapter discusses some of the run-time issues associated with developing an
application that uses TopLink Container-Managed Persistence.

Chapter 7, "Customization"
This chapter describes advanced customization of mappings, logins, and other
aspects of persistence. These customizations enable you to take advantage of
advanced TopLink features, JDBC driver features, or gain “low-level” access to
some of TopLink for Java APIs that are normally masked.

Chapter 8, "The Single Bean Example Application"
This chapter introduces the basic concepts that are required to build and deploy an
entity bean with TopLink.

Appendix A, "EJB Architectures Summary"
This appendix provides an overview of some of the basic design patterns available
when using TopLink and TopLink CMP. It briefly suggests some of the more useful
EJB designs and their suitability to specific applications.

Appendix B, "The toplink-ejb-jar DTD"
This appendix contains a listing of the toplink-ejb-jar document type
description (DTD).

xiv

Related Documents
For more information, see these Oracle resources:

Oracle9iAS TopLink Getting Started
Provides installation procedures to install and configure TopLink. It also introduces
the concepts with which you should be familiar to get the most out of TopLink.

Oracle9iAS TopLink Tutorials
Provides tutorials illustrating the use of TopLink. It is written for developers who
are familiar with the object-oriented programming and Java development
environments.

Oracle9iAS TopLink Foundation Library Guide
Introduces TopLink and the concepts and techniques required to build an effective
TopLink application. It also gives a brief overview of relational databases and
describes who TopLink accesses relational databases from the object-oriented Java
domain.

Oracle9iAS TopLink Mapping Workbench Reference Guide
Includes the concepts required for using the TopLink Mapping Workbench, a
stand-alone application that creates and manages your descriptors and mappings
for a project. This document includes information on each Mapping Workbench
function and option and is written for developers who are familiar with the
object-oriented programming and Java development environments.

Oracle9iAS TopLink Container Managed Persistence for Application
Servers
Provides information on TopLink container-managed persistence (CMP) support for
application servers. Oracle provides an individual document for each application
server specifically supported by TopLink CMP.

Oracle9iAS TopLink Troubleshooting
Contains general information about TopLink’s error handling strategy, the types of
errors that can occur, and Frequently Asked Questions (FAQs). It also discusses
troubleshooting procedures and provides a list of the exceptions that can occur, the
most probable cause of the error condition, and the recommended action.

xv

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/
Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

Conventions

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

xvi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id and location_id
columns are in the hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example

xvii

Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating
systems and provides examples of their use.

... Horizontal ellipsis points indicate either:

� That we have omitted parts of the
code that are not directly related to
the example

� That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, vertical bars, and ellipsis points
as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs >

Case sensitivity
and file and
directory names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

IMPORTANT NOTE: File names and directory names are case sensitive under UNIX.
Where the name of a file or directory is mentioned and the operating system is a
non-Windows platform, you must enter the names exactly as they appear unless instructed
otherwise.

Convention Meaning Example

xviii

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/password
FROMUSER=scott TABLES=(emp, dept)

<INSTALL_DIR> Represents the Oracle home installation
directory name. The home name can be
up to 16 alphanumeric characters. The
only special character allowed in the
home name is the underscore.

SET CLASSPATH=[INSTALL_DIR]\jre\bin

Convention Meaning Example

xix

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

� C:\orant for Windows NT

� C:\orawin95 for Windows 95

� C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle. If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

xx

Introduction 1-1

1
Introduction

This document includes an example application that illustrates how to use EJB 1.1
entity beans with TopLink Container-Managed Persistence. The Single Bean
Example shows how a single EJB bean can be made persistent using TopLink
Container-Managed Persistence’s container-managed persistence support. This
example application illustrates simple direct-to-field mappings and introduces the
basic steps required to deploy a bean.

If you are a new user, go through the single bean example, as well as the other
examples included in the TopLink installation. These examples provide you with
some hands-on experience with TopLink, and give you a better understanding of
TopLink’s power and usefulness.

TopLink Container-Managed Persistence
TopLink Container-Managed Persistence is an extension of the TopLink for Java
persistence framework. In addition to providing all of TopLink for Java's
object-relational persistence facilities, TopLink Container-Managed Persistence also
provides container-managed persistence (CMP) for Enterprise JavaBeans (EJBs)
deployed in the IBM WebSphere server.

TopLink's CMP supports complex mappings from entity beans to relational
database tables, and enables you to model relationships between beans, and
between beans and regular Java objects. TopLink provides a rich set of querying
options and allows query definition at the bean-level rather than the database level.

TopLink Container-Managed Persistence provides container-managed persistence and
other object-relational mapping features for IBM WebSphere Server 4.0. Earlier
versions of IBM WebSphere are not supported by this release.

TopLink Container-Managed Persistence supports the specification as defined by
Sun Microsystems.

TopLink for Java

1-2 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

TopLink Container-Managed Persistence is an extension of the TopLink for Java
product and shares all of its core functionality.

TopLink for Java
TopLink for Java provides an easy way to map a Java object model to a relational
database. TopLink is a persistence framework that bridges the gap between objects
and relational databases, and allows you to work at the object level.

TopLink supports the creation of a wide variety of Java applications. For building
two-tier, three-tier, or n-tier applications; TopLink can be used within EJB and
non-EJB environments. It can also be used within Java application servers or on its
own.

If you are using TopLink for persistence requirements other than
container-managed persistence (such as traditional two-, three-, or n-tier
applications, non-EJB applications, or session bean-based applications), refer to the
Oracle9iAS TopLink Foundation Library Guide. That document includes information
on advanced TopLink features that are not included in this manual.

TopLink Mapping Workbench
TopLink Mapping Workbench is a separate tool that provides a graphical method of
configuring the descriptors and mappings of a project. It provides many checks to
ensure that the descriptor settings are valid, and it also provides advanced
functionality for accessing the database and creating a database schema.

The TopLink Mapping Workbench does not generate Java code during
development, which would be unmanageable if the descriptors changed. Instead, it
stores descriptor information in an XML deployment file, which can be read into a
Java application using a TopLink method. When the application needs to be
repackaged into a runtime, TopLink can then generate a .java file from the XML
file, eliminating the need for TopLink Mapping Workbench files at runtime.

The TopLink Mapping Workbench displays all of the project information for a given
project, including classes and tables. Refer to the Oracle9iAS TopLink Mapping
Workbench Reference Guide for more information on editing projects and descriptors
using TopLink Mapping Workbench.

Understanding container-managed persistence

Introduction 1-3

Understanding container-managed persistence
This section introduces the concepts required to use TopLink’s container-managed
persistence (CMP) facilities. It highlights the particular features available in TopLink
Container-Managed Persistence that are not available in TopLink’s core Java
Foundation Library and explains any differences in the use of other core features.

Enterprise JavaBeans (EJBs)
This manual assumes that you have some familiarity with Enterprise JavaBeans
(EJBs) and related concepts. This section provides an overview of some of the key
terms that are encountered when discussing EJBs.

For more information about Enterprise JavaBeans, visit the Sun Microsystems EJB
site at http://java.sun.com/products/ejb.

Terminology and definitions

Enterprise JavaBeans To quote the Sun EJB specification, an enterprise bean
implements a business task, or a business entity. Enterprise JavaBeans are
server-side domain objects that fit into a standard component-based architecture for
building enterprise applications using the Java language. They are Java objects that,
when installed in an EJB server such as the IBM WebSphere Server, become
distributed, transactional, and secure components. There are two kinds of EJBs:
session beans and entity beans.

EJB Server and Container An EJB bean is said to reside within an EJB Container
that in turn resides within an EJB Server. The exact distinction between container
and server is not completely defined. In general, the server provides the bean with
access to various services (transactions, security, and so on.) while the container
provides the execution context for the bean by managing its life cycle.

Deployment descriptors The additional information required to install an EJB
within its server is provided in the deployment descriptors for that bean. The
deployment descriptors consists of a set of XML files that provide all of the required
security, transaction, relationship, and persistence information for the bean.

Session beans Session beans represent a business operation, task, or process.
Although the use of a session bean may involve database access, the beans are not
in themselves persistent – they do not directly represent a database entry. Session
beans may or may not retain conversational state; they may be stateful and retain

Understanding container-managed persistence

1-4 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

client information between calls, or they may be stateless and only retain
information within a single method call.

TopLink may be used with session beans to make the regular Java objects that they
access persistent, or can be used to access TopLink persistent entity beans. Session
beans may also act as wrappers to other legacy applications.

Entity beans Entity beans represent a persistent data object – an object with
durable state that exists from one access to the next. To accomplish this, the entity
bean must be made persistent in a relational database, object database, or some
other storage facility.

Two schemes exist for making entity beans persistent: bean-managed persistence
(BMP) and container-managed persistence (CMP). BMP requires that the bean
developer hand-code the methods that perform the persistence work. CMP uses
information supplied by the developer or deployer to handle all aspects of
persistence.

Java objects and Entity Beans
A Java object contains the following components:

Attributes. Store primitive data such as integers, and also store simple Java types
such as String and Date.

Relationships References to other TopLink-enabled classes. A TopLink-enabled
class has a descriptor and can be stored in the database. Because TopLink-enabled
classes can be stored in a database, they are called persistent classes.

Methods Paths of execution that can be invoked in a Java environment. Methods
are not stored in the database because they are static.

An entity bean has the following parts:

The bean instance An instance of an entity bean class supplied by the developer
of the bean. It is a regular Java object whose class implements the
javax.ejb.EntityBean interface. The bean instance has persistent state. The client
application should never access the bean instance directly.

The EJBObject An instance of a generated class that implements the remote
interface defined by the bean developer. This instance wraps the bean and all client
interaction is made through this object. The EJBObject does not have persistent
state.

Understanding container-managed persistence

Introduction 1-5

The EJBHome An instance of a class that implements the home interface supplied
by the bean developer. This instance is accessible from JNDI and provides all create
and finder methods for the EJB. The EJBHome does not have persistent state.

The EJB Primary Key An instance of the primary key class provided by the bean
developer. The primary key is a serializable object whose fields match the primary
key fields in the bean instance. Although the EJB Primary Key shares some data
with the bean instance, it does not have persistent state. Note that as of EJB 1.1, it is
not required that a bean have a separate primary key class when the key consists of
a single field.

For more information about IBM WebSphere Server tools, APIs, or concepts, refer to
the IBM WebSphere Server documentation.

For more information about the Enterprise JavaBeans standard, visit the Sun
Microsystems EJB site at http://java.sun.com/products/ejb.

Understanding container-managed persistence

1-6 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Mapping Entity Beans 2-1

2
Mapping Entity Beans

This chapter describes how to map container-managed entity beans using the object
mapping features of TopLink for Java. Instructions and hints for using direct and
relationship mappings in an EJB context are provided, and differences between
beans and regular Java objects are outlined.

For information on direct and relationship mappings, see the Oracle9iAS TopLink
Mapping Workbench Reference Guide. You should read and thoroughly understand
those chapters before attempting to map entity beans.

Using TopLink Mapping Workbench
When using TopLink Mapping Workbench with entity beans, the bean classes
themselves should be loaded into TopLink Mapping Workbench. The remote, local,
home, and local home interfaces and the primary key class do not need to be
loaded, nor should mappings be defined using these classes.

Make sure you include any classes referred to by the entity beans on the project
classpath that is used by the TopLink Mapping Workbench project, otherwise errors
may occur when the beans are loaded. The remote, local, home, and localhome
interfaces should also be avilable on the classpath, as they may be used during EJB
validation.

Mappings
TopLink mappings define how an object’s attributes are to be represented in the
database. Attributes that are to be persistent, or that reference other beans or
mapped objects, must be mapped to the database using either direct or relationship
mappings.

Mappings

2-2 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

To enable container-managed persistent storage of entity beans, the attributes on the
bean implementation class must be mapped. The home and remote interface classes
should not be mapped. Primary key classes, if they exist, also should not be
mapped.

Creating mappings
You can create mappings by using TopLink Mapping Workbench or by using the
Java code-based API. TopLink Mapping Workbench is a visual tool that offers
windows and dialogs to set properties and to configure the mappings and TopLink
descriptors for any given project. This is the preferred method of creating
mappings, and should be used whenever possible.

TopLink Mapping Workbench imposes some limitations that require you to use the
code API instead of the tool, but these limitations are few and are mentioned in the
TopLink Mapping Workbench documentation.

For more information on the TopLink Mapping Workbench features and usage, and
on the limitations mentioned above, see the Oracle9iAS TopLink Mapping Workbench
Reference Guide.

Direct mappings
Direct mappings define how a persistent object refers to objects that do not have
TopLink descriptors, such as the JDK classes, primitive types and other
non-persistent classes.

Attributes containing state that is a primitive object, or a regular object that is not
itself mapped to the database should be mapped using a direct mapping. For
example, a String attribute would need a direct to field mapping for the attribute to
be stored in a VARCHAR field.

For a complete description of direct mappings, see the Oracle9iAS TopLink Mapping
Workbench Reference Guide.

Entity bean attributes can be mapped using direct mappings without any special
considerations.

Note: The entity context attribute (type javax.ejb.EntityContext)
should not be mapped.

Mappings

Mapping Entity Beans 2-3

Relationship mappings
Persistent objects use relationship mappings to store references to instances of other
persistent classes. The appropriate mapping type is based primarily upon the
cardinality of the relationship (for example, one-to-one compared to one-to-many).
For a complete description of relationship mappings, see the Oracle9iAS TopLink
Mapping Workbench Reference Guide.

Entity beans may be related to regular Java objects, other entity beans, or both. The
following sections outline the mappings and conditions where special attention
must be paid to correctly map beans and execute operations that traverse or modify
these relationships.

Mappings between entity beans
The EJB 1.1 specification does not specify how one entity bean should store an
object reference to another entity bean. TopLink for IBM WebSphere goes beyond
what is available in the specification and allows the creation of inter-bean
relationships.

A bean that has a relationship to another bean acts as a “client” of that bean; that is,
it does not access the actual bean directly but acts through the remote interface of
the bean. For example, if an OrderBean is related to a CustomerBean, it has an
instance variable of type Customer (the remote interface of the CustomerBean) and
only accesses those methods defined on the Customer interface.

Mappings between entity beans and Java objects
The EJB 1.1 specification notes that entity beans should represent “independent
business objects” and that dependent objects are “better implemented as a Java class
(or several classes) and included as part of the entity bean on which it depends.”

Note: Although beans must refer to each other through their remote
interface, all TopLink descriptors and projects refer to the bean class. For
example, if you are mapping beans using the TopLink Mapping
Workbench and defining relationships between them, you need to load
only the bean classes and not the remote or home interfaces. When
defining a relationship mapping in both the TopLink Mapping
Workbench and code API, the “reference class” is always the bean class.

Mappings

2-4 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

The following relationship mappings may exist between an entity bean and regular
Java objects:

� One-to-one, privately-owned mappings (bean is source, Java object is target)

� One-to-many, privately-owned mappings (bean is source, Java object(s) is
target)

� Aggregate mappings (bean is source, Java object is target)

� Direct collection mappings (bean is source, Java object is target and is a “base”
datatype, such as String, or Date)

Relationships from entity beans to regular Java objects should be dependent and
relationships between entity beans should be independent.

If dependent objects are exposed to the client, these objects must be serializable.

One-to-one mappings
One-to-one mappings represent simple pointer references between two objects. For
a complete description of one-to-one mappings, see the Oracle9iAS TopLink Mapping
Workbench Reference Guide.

One-to-one mappings are valid between entity beans, or between an entity bean
and a regular Java object where the entity bean is the source and the regular Java
object is the target of the relationship.

To maintain EJB compliance, the object attribute that points to the target of the
relationship must be of the correct type if the target is a bean. This must be the
remote interface type and not the bean class.

There are a number of advanced variations on one-to-one mappings, that allow for
more complex relationships to be defined — in particular variable one-to-one
mappings allow for polymorphic target objects to be specified. These variations are
not available for entity beans, but are valid for dependent Java objects. For more
information on these kinds of mappings, see the Oracle9iAS TopLink Mapping
Workbench Reference Guide.

One-to-many mappings
One-to-many mappings are used to represent the relationship between a single
source object and a collection of target objects. For more information on
one-to-many mappings, see the Oracle9iAS TopLink Mapping Workbench Reference
Guide.

Mappings

Mapping Entity Beans 2-5

One-to-many mappings are valid between entity beans or between an entity bean
and a collection of privately-owned regular Java objects.

As described in the Oracle9iAS TopLink Mapping Workbench Reference Guide, a
one-to-one mapping should also be created from the target object back to the source.
The object attribute that contains a pointer to the bean must be of the correct type
(the local interface type) and not the bean class.

Many-to-many mappings
Many-to-many mappings represent the relationships between a collection of source
objects and a collection of target objects. They require the creation of an
intermediate table for managing the associations between the source and target
records. For more information on many-to-many mappings, see the Oracle9iAS
TopLink Mapping Workbench Reference Guide.

When using container-managed persistence, many-to-many mappings are valid
only between entity beans and cannot be privately owned. The exception is when a
many-to-many mapping is used to implement a logical one-to-many mapping with
a relation table.

Aggregate object mappings
Two objects are related by aggregation if there is a strict one-to-one relationship
between the objects and all the attributes of the second object can be retrieved from
the same table(s) as the owning object. This means that if the target (child) object
exists, then the source (parent) object must also exist. The child (owned object)
cannot exist without its parent.

For a complete description of aggregate object mappings, see the Oracle9iAS TopLink
Mapping Workbench Reference Guide.

Aggregate mappings can be used with entity beans when the source of the mapping
is an entity bean and the target is a regular Java object. It is not valid to make an
entity bean the target of an aggregate object mapping. As a consequence, it follows
that aggregate mappings between entity beans are likewise invalid.

Note: Aggregate objects are privately owned and should not be shared
or referenced by other objects.

Sequencing with Entity Beans

2-6 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Aggregate collection mappings
Aggregate collection mappings are used to represent aggregate relationships
between a single source object and collection of target objects. Unlike normal one-to
many mappings, there is no one-to-one back reference required. Unlike the normal
aggregate mappings, a target table is required for the target objects.

For a complete description of Aggregate collection mappings, see the Oracle9iAS
TopLink Mapping Workbench Reference Guide.

Aggregate collection mappings can be used with entity beans if the source of the
relationship is an entity or Java object, and the targets of the mapping are regular
Java objects. It is not possible to define an aggregate collection mapping with entity
beans as the targets.

Aggregate collections are most appropriate when the target collections are expected
to be moderate in size and a one-to-one mapping from target to source would be
difficult. In addition, great care should be taken to ensure the identity of the
Aggregate object, when referencing objects from an Aggregate within an Aggregate
Collection.

Sequencing with Entity Beans
Sequencing is a mechanism which can be used to populate the primary key
attribute of new objects/entity beans before inserting them into the database. Refer
to the Oracle9iAS TopLink Mapping Workbench Reference Guide for details on the
different kinds of TopLink sequencing: table and native.

The configuration of sequencing is similar for both Java objects and entity beans.
However, with entity beans a create() method exists on the bean home interface,
and ejbCreate() and ejbPostCreate() methods are implemented on the bean
implementation class.

Because the primary key is automatically generated, no primary key is passed into
the create() method on the home interface when the bean is created. If you are
using table-based sequencing or native sequencing for databases that support

Caution: Although aggregate collection mappings appear similar to
one-to-many mappings, aggregate collections should not be used in
place of one-to-many mappings. One-to-many mappings are more robust
and scalable, and offer better performance. In addition, aggregate
collections are privately owned by the source of the relationship and
should not be shared or referenced by other objects.

Inheritance

Mapping Entity Beans 2-7

pre-allocation of sequence numbers, the bean’s primary key is available in the
ejbPostCreate() method (which is the only native sequencing available for some
CMP implementations).

Adding sequencing outside of the TopLink Mapping Workbench
WebSphere does not support auto-incrementing identity fields such as those found
in DB2, Sybase and SQL Server databases when using TopLink for WebSphere
Foundation Library. Use a sequence table or Oracle sequence object to implement
sequencing with the TopLink for WebSphere Foundation Library.

In order for TopLink to correctly assign the sequence number to a newly created
bean the following line must be added to the ejbCreate method in the bean class:

oracle.toplink.ejb.cmp.was.SessionLookupHelper.
getHelper().getSession(this).getActiveUnitofWork().assignSequenceNumber(this);
This line looks up the correct session and uses it to assign a sequence number to the
bean. For more information on setting up sequencing see the Oracle9iAS TopLink
Mapping Workbench Reference Guide.

Inheritance
Although inheritance is a standard tool in object-oriented modeling, no
implementation guidelines are outlined in the EJB specification. The EJB 1.0
specification does not address the issue, and the 1.1 specification discusses it only in
general terms. As a result, any use of inheritance should be approached cautiously.

Some restrictions apply to entity beans when using inheritance:

� The home interfaces cannot inherit. The findByPrimaryKey method must be
overloaded in order to have the correct return type, but this is not allowed. As a
result, inheritance is not applicable to the home interfaces.

� The primary key of the subclass must be the same as that of the parent class.

The advanced example application illustrates inheritance. For more information, see
the ReadMe.html file in the root directory of the advanced example application.
This application is located in {ORACLE_
HOME}\TopLink\examples\was\examples\ejb\cmp11\advanced.

Note: TopLink defers database access to the commit stage of the
transaction. Clients that use client-initiated UserTransactions should
not reference the primary key of newly created objects because they are
not yet properly initialized before commit-time.

Indirection

2-8 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Indirection
TopLink provides several mechanisms for just-in-time reading of relationships (also
referred to as “lazy-loading” and “indirection”). There are two techniques that are
available:

� use of indirection objects

� transparent indirection

While these indirection mechanisms are described in the Oracle9iAS TopLink
Mapping Workbench Reference Guide, there are a number of issues that entity bean
developers should be aware of when using indirection. In general these issues arise
due to the migration of objects between client and server.

Issues include:

� Un-instantiated ValueHolders (indirection objects) do not survive serialization.
If a ValueHolder is sent from the server to the client, it will no longer function
unless it has been previously triggered.

� ValueHolders can be used in bean-bean relationships, and bean-object
relationships, but should be avoided in relationships whose source is likely to
be serialized to the client.

� Collections that use transparent indirection should not be serialized to the client
application before they are instantiated. These collections will not function if
they are serialized.

� ValueHolders should generally be used for bean-bean relationships, and for
bean-object relationships. Transparent indirection can be used for collections
that are not exposed to the client application.

For more information about these and other important issues, consult Chapter 6,
"Run time considerations".

Configuring TopLink Container-Managed Persistence 3-1

3
Configuring TopLink Container-Managed

Persistence

This chapter describes the configuration and testing of TopLink Container-Managed
Persistence. Please refer to Oracle9iAS TopLink Getting Started for installation
information.

Software requirements
TopLink Container-Managed Persistence requires:

� IBM WebSphere 4.0

� A JDBC driver that is configured to connect with your local database system
(see your database administrator)

� A Java development environment that is compatible with the JDBC API, such
as:

� Oracle JDeveloper

� IBM WebSphere Studio Application Developer (WASD)

� Sun JDK 1.2 or higher (note that TopLink ships with JDK 1.3 JAR files that
are compatible with the JDK 1.2)

� IBM VisualAge for Java

� Any other Java environment that is compatible with the Sun JDK 1.3 or
higher

� A command-line Java virtual machine (VM) executable (such as java.exe or
jre.exe)

Software requirements

3-2 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

A note about the WebSphere Module Visibility setting TopLink only supports the
WebSphere APPLICATION mode and MODULE mode for module visibility. This is
because of the way WebSphere Application Server defines its class loader isolation
mode for each setting.

A J2EE application (EAR file) can have multiple EJB modules (EJB JAR files).
TopLink Container-Managed Persistence is designed to load one
toplink-ejb-jar.xml per EJB module (EJB JAR). If the module visibility mode is
not set to MODULE, an EJB module could load the wrong toplink-ejb-jar.xml
from the other EJB module. TopLink CMP also supports the application with the
restriction that each application can only have one EJB JAR file. Again, this is due to
how class loader is designed for this mode. For more information about module
visibility in WebSphere, consult the WebSphere documentation.

WebSphere 4.0 document from the link above indicates, “Portable J2EE applications
should be written with Module-level visibility.” Developer should keep this in mind
when developing application.

Table 3–1 TopLink support of server-installable applications on server vs. module visibility mode

Installable Applications on Server

Module Visibility Mode

Application Module Compatibility Server

Multiple applications in which each
application can have multiple TopLink EJB
modules

No Yes No No

Multiple applications in which each
application has single TopLink EJB module

Yes Yes No No

Single application has multiple TopLink EJB
modules

No Yes No No

Single application has Single TopLink EJB
module

Yes Yes Yes Yes

Configuring TopLink CMP

Configuring TopLink Container-Managed Persistence 3-3

Configuring TopLink CMP
The following procedures configure TopLink Container-Managed Persistence
Foundation Library. This procedure assumes you have already installed TopLink
Container-Managed Persistence.

The steps required for preparing a system for TopLink depends on the type of
system you are running:

� To prepare a Windows-based system, you must copy some JARs from the
TopLink installation to your WebSphere installation (see “"Installing TopLink
JARs to a WebSphere Server" on page 3-3, next) and then modify your PATH
and CLASSPATH (see "To Modify the PATH and CLASSPATH for running the
Deploy tool" on page 3-4).

� To prepare a non-Windows environment, you must modify your PATH and
CLASSPATH.

Installing TopLink JARs to a WebSphere Server
1. Create a directory structure in the WebSphere installation directory as follows:

<WEBSPHERE_INSTALL_DIR>\lib\app

If you are using WebSphere, (the default installation directory is
C:\WebSphere\AppServer) ; if you are using WSAD, the default directory is
C:\Program Files\ibm\Application
Developer\plugins\com.ibm.etools.websphere.runtime.

2. Copy the following JAR files to the directory you created:

� <INSTALL_DIR>\core\lib\toplink.jar

� <INSTALL_DIR>\core\lib\xerces.jar

� <INSTALL_DIR>\core\lib\tl_wasx.jar

Notes:

� If you are running under Windows NT, make sure you have
administrator privileges. Also, make sure you modify the System
Variables, not the User Variables.

� Java package names are case-sensitive. If you are installing under a
32-bit Windows environment, ensure the case sensitivity is enabled.

Testing your TopLink installation

3-4 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

� <INSTALL_DIR>\hsql\lib\hsql_ds.jar

� <INSTALL_DIR>\hsql\lib\hsqldb.jar

where <INSTALL_DIR> is the directory into which you installed TopLink
(C:\{ORACLE_HOME}\toplink if you installed to the default directory).

3. Check the PATH and, if necessary, modify it to include <JAVADIR>\bin where
<JAVADIR> is the installation drive and directory for your Java Virtual Machine
(VM) executable. This path must be the first one listed in the PATH
environment variable, before any other paths.

4. Check and if necessary, modify the CLASSPATH environment variable.

To Modify the PATH and CLASSPATH for running the Deploy tool
1. If you have not already done so, edit your PATH to include <JAVADIR>\bin\;

as the first entry in the PATH list.

2. Edit the CLASSPATH to include all of the following:

<INSTALL_DIR>\core\lib\toplink.jar;<INSTALL_DIR>\core\lib\xerces.jar;
<INSTALL_DIR>\was_cmp\lib\tl_wasx.jar;<INSTALL_DIR>\hsql\lib\hsqlds.jar;
<INSTALL_DIR>\hsql\lib\hsqldb.jar
where <INSTALL_DIR> is the directory into which you installed TopLink
(C:\{ORACLE_HOME}\toplink if you installed to the default directory).

Testing your TopLink installation
Compile and execute the JDBCConnectTest class in the
oracle.toplink.tutorials.gettingstarted package.

To test the installation, do one of the following:
� Run the JDBCConnectTest class from the command line, passing appropriate

database login information as parameters as follows:

java oracle.toplink.tutorials.gettingstarted.JDBCConnectTest <username>
<password> <database url> <jdbc driver class>

or

Note: The CLASS and CLASSPATH commands must appear in your
autoexec.bat file. If either of them is missing, you must add them
manually.

Testing your TopLink installation

Configuring TopLink Container-Managed Persistence 3-5

� Modify the main() method to contain appropriate database login information
as parameters, then recompile and execute the class. For example:

public static void main(String[] args) {
JDBCConnectTest test = new
JDBCConnectTest();
if (args.length > 0) {
test.connect(args[0], args[1], args[2], args[3]);
}
// Add your login information below
else {
/*This test uses the WebSphere sql server driver. Any compliant jdbc
driver can be used. Do not use WebSphere pool devices for this test.*/
test.connect("<user>","<password>",
"WebSphere.jdbc.mssqlserver4.Driver",
"jdbc:WebSphere:mssqlserver4:myserver:1433");
}

}
If the code does not run successfully, check the error message and ensure that all of
your settings are correct. You may also need to consult Oracle9iAS TopLink
Troubleshooting.

Testing TopLink deployment tool
With the Java VM PATH and CLASSPATH properly configured, run the following
classes to test the deployment tool:

java oracle.toplink.ejb.cmp.was.deploy.Deploy

java oracle.toplink.ejb.cmp.was.deploy.EJBDeployFrame(GUI
tool)

Other ways to test the installation:

� Run the deploy tool by clicking Start > Programs > Oracle9iAS
TopLink > Tools > Deploy Tool for WebSphere Server.

� Execute the script deployTool.cmd or deployTool.sh to invoke the GUI tool:

� <INSTALL_DIR>\was_cmp\deployTool.cmd (for Windows)

� <INSTALL_DIR>/was_cmp/deployTool.sh (for Unix)

Testing your TopLink installation

3-6 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Testing TopLink Container-Managed Persistence with entity beans
To test TopLink Container-Managed Persistence with entity beans, run the Single
Bean example documented in Chapter 8, "The Single Bean Example Application". .

When the TopLinkConnectTest, the TopLink Mapping Workbench, and the Single
Bean example all run successfully, your TopLink installation is complete.

Running the Server with TopLink
Start the server as described in the WebSphere documentation. Refer to the
WebSphere documentation for more information on class loader and classpath
issues. Once the server is running, start the TopLink CMP application.

See Oracle9iAS TopLink Troubleshooting for more information.

Note: If you encounter problems running WebSphere, contact IBM
support.

EJB Entity Bean Deployment 4-1

4
EJB Entity Bean Deployment

TopLink Container-Managed Persistence provides container-managed persistence
(CMP) for 1.1 Enterprise JavaBeans (EJBs). The deployment process generates CMP
code that allows TopLink to handle persistence aspects of EJBs. To install entity
beans within the IBM WebSphere ApplicationServer and make them available for
client applications, entity beans must be deployed within the server.

Overview of deployment
The goal of deployment is to make entity beans available to client applications. The
early stages of the process involves writing entity beans, and mapping the beans to
create a TopLink project. The deployment process involves several stages that start
with configuring the deployment descriptor and generating deployed code in
TopLink. The final stages of deployment process include deploying beans to the
server and starting the beans. For much of the deployment process, WebSphere
tools for Java, and TopLink Deployment Tool programs are used.

Understanding Deployment
The term “deployment” can sometimes cause confusion since there are actually a
number of stages that occur between creating the bean classes and installing them
in a running server.

Generally speaking the deployment process is three distinct steps:

1. Configuration - A number of properties are specified for the bean, including
what persistence mechanism is being used and additional information required
by the persistence mechanism.

Configuring entity bean deployment descriptors

4-2 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

2. Code generation - The information provided in the configuration stage is used
by both IBM WebSphere and TopLink tools to generate the classes required for
the bean. This includes helper classes related to transactions, persistence, and
security, the EJBHome and EJBObject implementations, and the stubs and
skeletons required for RMI-IIOP.

3. Installation - The server is started and instructed to make the bean available to
clients.

Requirements before deployment
The following tasks must be completed prior to the deployment of TopLink
persisted entity beans:

� Write and compile the various parts of each entity bean to be deployed,
including the bean class, remote interfaces, home interfaces, and the primary
key class (if required).

� Map the entity beans to the appropriate database tables, and save the mapping
information in a TopLink project class or project file (deployable XML file).

Assemble the entity beans into a .jar or .ear file

To create the EAR or JAR file
1. Create a toplink-ejb-jar.xml file to associate the TopLink project with the

JAR and put it in the same directory as ejb-jar.xml.

2. Add the Toplink project. If the project is a Java class then it must be added to
the same directory location as bean classes. If the project it is an XML file then it
must be added to the same directory as ejb-jar.xml file (i.e META-INF/).

Configuring entity bean deployment descriptors
The deployment descriptor and other WebSphere configuration settings can be
edited by opening the EJB Jar or EAR file in the WebSphere Application Assembly
Tool (WAAT; see the documentation accompanying WAAT for more information).
The deployment descriptor can also be edited manually by opening it in a text
editor.

<?xml version = "1.0" encoding = "US-ASCII"?>
<!DOCTYPE toplink-ejb-jar PUBLIC "-//Oracle Corp.
//DTD TopLink 9.0.3 CMP for WebSphere//EN"
"toplink-was-ejb-jar_903.dtd">

Preparing for deployment

EJB Entity Bean Deployment 4-3

<toplink-configuration>
<session>

<name>ejb_cmp11_singlebean</name>
<project-class>

examples.ejb.cmp11.singlebean.AccountProject
</project-class>
<session-type>

<server-session>
</session-type>
<login>

<platform-class>
oracle.toplink.internal.databaseaccess.HSQLPlatform

</platform-class>
<uses-external-connection-pool>true</uses-external-connection-pool>
<uses-external-transaction-controller>true
</uses-external-transaction-controller>

_</login>
<external-transaction-controller-class>

oracle.toplink.jts.was.JTSExternalTransactionController_4_0
</external-transaction-controller-class>
<enable-logging>true</enable-logging>
<logging-options>

<log-debug>true</log-debug>
<log-exceptions>true</log-exceptions>
<log-exception-stacktrace>true</log-exception-stacktrace>
<print-thread>true</print-thread>
<print-session>true</print-session>
<print-connection>true</print-connection>
<print-date>true</print-date>

</logging-options>
</session>

</toplink-configuration>

 Preparing for deployment
After the bean has been mapped to the appropriate tables using the TopLink
Mapping Workbench, some additional configuration is required. This includes
creating and editing the deployment descriptor information, and generating the
classes that the WebSphere server will use at runtime.

This section describes the steps involved in preparing for deployment. Consult
WebSphere Application Server documentation for the most up-to-date information
on the reference tools.

Preparing for deployment

4-4 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

The steps are:

� Run the TopLink Deployment tool to generate a deployed JAR composed of the
EJB JAR files

� Deploy the deployed JAR to the server (stand-alone module), or assemble the
deployed EJB JAR into an EAR file with WAAT and deploy the EAR file to the
server (application mode).

� Start the application to make the beans available to the clients.

Running the Deployment Tool
The Deployment Tool is used to create the Deployed JAR from the EJB JAR or the
VisualAge Deployed JAR. There are two ways to run the deployment tool: as a
command line tool, or as a graphic interface.

Running the command line Deployment Tool
The command line deploy tool requires that the CLASSPATH is setup correctly. The
Installation section in Oracle9iAS TopLink Getting Started contains a list of
CLASSPATH items that the Deploy Tool requires. In addition, the dependent classes
referred to by your entity beans must be in the CLASSPATH. The command-line
deploy tool can be invoked using the following command:

java oracle.toplink.ejb.cmp.was.deploy.Deploy

Running the graphic Deployment tool
To run the graphic user interface deployment tool from Windows, click
Start > Programs > Oracle9iAS TopLink > Tools > Deploy Tool for WebSphere
Server.

You can also manually start the script files that preconfigure the CLASSPATH to
start this graphic interface deploy tool. The files are

<INSTALL_DIR>\was_cmp\deployTool.cmd (for Windows)

<INSTALL_DIR>/was_cmp/deployTool.sh (for Unix)

The Deployment Tool is used to create the Deployed JAR from the EJB JAR. Fill in
the necessary fields in the Deploy Tool. The File menu allows settings of fields to be
saved to a file and the settings are retrieved when the file is loaded.

Preparing for deployment

EJB Entity Bean Deployment 4-5

Figure 4–1 The TopLink Deploy Tool

Set the Source EJB JAR File The EJB JAR created in WebSphere AAT or WSAD.

Deploy EJB JAR File The path and name of the JAR file which will be generated
by the tool.

Working Directory The temporary directory in which generating classes will be
stored. The directory will not be deleted if the “Preserve the working directory and
generated classes” option is selected.

WebSphere Home The directory where WebSphere Application Server is
installed, e.g. C:\WebSphere\AppServer.

WebSphere JDK Home The directory where the Java VM of WebSphere
Application Server is installed, e.g. C:\WebSphere\AppServer\java

Classpath Set the Classpath field to include the toplink.jar and the tl_
wasx.jar files and other required resources such as the dependent Java classes.

Preparing for deployment

4-6 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

To deploy a JAR
1. If the Copy generated source to directory option is selected, a copy of the generated

code is placed in the specified directory. This is a quick and efficient way to
copy the files into a WSAD project working directory.

2. Select the Turn on tracing options if you want to see the details of the process.

3. Click the Deploy EJB Jar button.

Using Deploy Tool with WebSphere Studio Application Developer (WSAD)
The Deploy tool is completely compatible with the WebSphere Studio Application
Developer (WSAD).

To deploy from the Deploy Tool to WSAD
1. Select the EJB Project in WSAD and choose to generate Deploy and RMIC Code.

2. Export the EJB Project to an EJB JAR, make sure that TopLink project,
toplink-ejb-jar.xml file are included in the EJB JAR.

3. Start the TopLink Deploy Tool.

4. Choose the EJB project working directory to allow TopLink to override WSAD
deploy code with TopLink deploy code.

5. If the source is copied to a directory other than the WSAD EJB Project folder,
manually copy the source files to the WSAD EJB Project under the ejbModule
directory of the project.

6. Enter appropriate directories in the fields of the Deploy Tool.

Preparing for deployment

EJB Entity Bean Deployment 4-7

Figure 4–2 The Deploy Tool set up for use with WSAD

7. Select Deploy EJB JAR to create the deployed EJB JAR.

8. Choose Rebuild all from the Project menu to compile the TopLink deploy code to
incorporate TopLink CMP.

Troubleshooting The most common error is NoClassDefFoundError exception
which can be corrected by adding the required resources to the “Classpath” input
field. Also “Turn on tracing” option helps to debug error during the generation of
deployment code. When an obscure error is shown during the generating stub
phase, copy the Java command and run it at the command prompt. This gives a
more detailed error message.

Deploying a TopLink-Deployed EJB JAR

To deploy to WebSphere Application Server
1. Start the Administration Server if it is not already started.

2. Start the Administrator’s Console and deploy the JAR. For information on
deploying the JAR, consult your WebSphere documentation.

Preparing for deployment

4-8 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

It is not necessary to deploy the EJB JAR in WSAD, because deployment is carried
using the Deploy Tool (see "Using Deploy Tool with WebSphere Studio Application
Developer (WSAD)" on page 4-6).

Starting the entity bean
You can start the bean in either the WebSphere Application Server or in WSAD.

To start the bean in IBM WebSphere Application Server
1. Select the application containing the entity beans.

2. Right click and choose Start.

A message dialog will be displayed if the bean started successfully. If an error
occurs, consult the Troubleshooting section.

To start the bean in WSAD
1. With WSAD running, right click the EJB project and choose Run on Server.

2. Optionally, open the Console tab of the Server view to view the status of the
process.

Running an EJB Client
After the beans have been deployed, an EJB client can be run to access them. The
client can either be a SessionBean or a Java program running outside the server.

The EJB client requires the following bean classes in its CLASSPATH: remote
interface, home interface, and primary key classes for all the beans accessed. In
addition, if the client is a session bean running on the same server as the entity
beans and you want to access the local interfaces of the entity beans, you must also
include their local and home interfaces on the CLASSPATH.

To lookup a bean’s home interface a JNDI InitialContext must be setup. Setting up
the initial context requires that the server’s URL be supplied.

Note: When deploying an application containing an entity bean, a data
source must be set up and associated with the bean. For information on
creating and associating data sources, consult your WebSphere
documentation.

Defining and Executing Queries 5-1

5
Defining and Executing Queries

TopLink Container-Managed Persistence provides a feature-rich query framework
in which complex database queries can be constructed and executed to retrieve
entity beans. When using TopLink Container-Managed Persistence, the developer
defines the finder methods on the home interface, but does not need to implement
them in the entity bean. TopLink provides this required functionality, and offers a
number of strategies for creating and customizing finders. The EJB container and
TopLink automatically generate the implementation.

Using Finder Libraries
The general steps required to successfully define a finder method for an entity bean
using TopLink query framework are as follows:

1. Define the finder method on the entity bean’s home interface (as required by
the EJB specification).

2. If required, create an implementation for the query. Some query options require
that the query be defined in code on a “helper class”, but this is not required for
most simple queries.

NAMED finders
A NAMED finder refers to a TopLink query that has been registered with the
container under a specific name.

Using Finder Libraries

5-2 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Creating NAMED finders
When using NAMED finders, the “find” method on the home interface must
correspond to the name of a TopLink query that has been registered with the
container. The query is implemented and then registered with the container within
a “TopLink descriptor amendment” method or session amendment class.

Example 5–1 A NAMED finder using a TopLink query named findCustomersInCity

 public Enumeration findCustomersInCity(String aCity)throws FinderException,
RemoteException;

Defining “named” TopLink queries
Before the findCustomersInCity finder shown in this example can work, the
corresponding named query findCustomersInCity must be defined and made
known to TopLink. This can be accomplished several ways, depending on the
mechanism used to define the query.

Under EJB QL or SQL When using EJB QL or SQL to define a finder, you can
either define the query in the Mapping Workbench in the bean descriptor's Queries
tab, or add the query to the descriptor in a user defined method.

Under the TopLink expression framework When using the TopLink expression
framework the query must be added using a user defined method.

The user defined method can take one of two forms:

� A descriptor amendment method specified on the bean descriptor in the
TopLink project in the Mapping Workbench

� The preLogin method on a session event listener class. Session event listener
classes are specified using the <event-listener-class> element in the
toplink-ejb-jar.xml descriptor.

Example 5–2 Create a ReadAllQuery

ExpressionBuilder exp = new ExpressionBuilder();
ReadAllQuery = new ReadAllQuery();
query.setReferenceClass(Customer.class);
query.setSelectionCriteria(exp.get("city").equal(exp.getParameter("city")));
query.addArgument("city");

Using Finder Libraries

Defining and Executing Queries 5-3

Example 5–3 Define findCustomersInCity query in the preLogin method of a
session event listener class and specify the session event listener class in the
toplink-ejb-jar.xml deployment descriptor.

public void preLogin(SessionEvent event) {
// create a query...
event.getSession().getDescriptor(Customer.class).getQueryManager().addQuery("fin
dCustomersInCity", query);
}

Example 5–4 Define findCustomersInCity query in the amendment method of the
descriptor

public static void amendment(Descriptor descriptor) {
// create a query...

descriptor.getQueryManager().addQuery("findCustomersInCity", query);
For more information on creating a named query, see “Query objects” in Chapter 1
of TopLink: Using the Foundation Library.

Using the TopLink expression framework
Define the named query in the amendment method, and add the query to the
TopLink descriptor’s QueryManager.

The named query must be defined based on the following:

� If the return type for the finder method on the home interface is
java.util.Enumeration or Collection, then the query object defined must
be a oracle.toplink.QueryFramework.ReadAllQuery. If the return type is
an entity bean’s remote interface (that is, only a single entity bean is returned),
then the query must be of type
oracle.toplink.QueryFramework.ReadObjectQuery.

� The reference class must be the bean class against which the finder is querying.

� The arguments defined in the query must exactly match the parameter names
and types of the corresponding finder element defined on the home interface.

The arguments defined in the query are retrieved via the
builder.getParameter() call and then are used for comparison purposes in
conjunction with various predicates/operators: equal(), like(), anyOf(), and so
on. For more information, see TopLink: Using the Foundation Library.

Using Finder Libraries

5-4 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Example 5–5 Using the TopLink expression framework

public static void addCustomerFinders(Descriptor descriptor) {
/*Enumeration findCustomersInCity(String aCity) Since this finder returns an
Enumeration, the type of the query is ReadAllQuery.The finder is a "NAMED"
finder. It's implementation is a ReadAllQuery that is registered with the
QueryManager.
*
*/
//1 the query is defined
ReadAllQuery query1 = new ReadAllQuery();
query1.setName("findCustomersInCity");
query1.addArgument("aCity");
query1.setReferenceClass(CustomerBean.class);
//2 an expression is used
ExpressionBuilder builder = new ExpressionBuilder();
query1.setSelectionCriteria
builder.get("city").like(builder.getParameter("aCity";
//3 An option at this point would be to set any desired options on the query,
e.g., queryl.refreshIdentityMapResult();
//4 Finally, the query is registered with the querymanager.
descriptor.getQueryManager().addQuery("findCustomersInCity",query1);
}

Using the generic NAMED finder
Alternatively you can use a named query without providing the matching
implementation on the home interface if you use the generic NAMED finder
provided by TopLink for IBM WebSphere Foundation Library. This finder takes the
name of the named query and a vector of arguments as parameters.

Example 5–6 The generic NAMED finder

public Enumeration findAllByNamedQuery(String queryName, Vector arguments)
throws RemoteException, FinderException;

CALL finders
CALL finders allow dynamic creation of queries. These dynamic queries are
generated at runtime instead of at deployment time. When using a CALL finder, a
TopLink SQLCall or StoredProcedureCall is passed as a parameter to a finder
that returns an Enumeration.

Using Finder Libraries

Defining and Executing Queries 5-5

Creating CALL finders
The implementation for CALL finders is supplied by TopLink for IBM WebSphere.
To make this available to your bean you will have to add the following finder
definition to the home interface of your bean.

Example 5–7 A CALL query

public Enumeration findAll(Call call) throws RemoteException,
FinderException;

Executing a CALL finder
When using a CALL finder, the call is created on the client using the TopLink
interface oracle.toplink.queryFramework.Call. this call has three
implementors: EJBQLCall, SQLCall and StoredProcedureCall. Refer to the
TopLink: Using the Foundation Library manual for details on creating instances of
these classes.

Example 5–8 Executing an CALL finder (select statement)

try {
SQLCall call = new SQLCall();
call.setSQLString("SELECT * FROM EMPLOYEE");
Enumeration employees = getEmployeeHome().findAll(call);

}

Example 5–9 Executing an CALL finder (stored procedure)

try {
StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("READ_ALL_EMPLOYEES");
Enumeration employees = getEmployeeHome().findAll(call);

EXPRESSION finders
EXPRESSION finders allow dynamic creation of queries. These dynamic queries are
generated at runtime instead of at deployment time. When using an EXPRESSION
finder, a TopLink Expression is passed as a parameter to a finder that returns an
Enumeration.

Using Finder Libraries

5-6 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Creating EXPRESSION finders
The implementation for EXPRESSION finders is supplied by TopLink for IBM
WebSphere Foundation Library. To make this available to your bean, you will have
to add the following finder definition to the home interface of your bean.

Example 5–10 An EXPRESSION query

public Enumeration findAll(Expression expression) throws RemoteException,
FinderException;

Executing an EXPRESSION finder
When using an EXPRESSION finder, the query is created on the client.

Example 5–11 Executing an EXPRESSION finder

try {
Expression expression = new
ExpressionBuilder().get("firstName").like("J%");
Enumeration employees =
getEmployeeHome().findAll(expression);

}

EJBQL finders
EJBQL is the standard query language defined in the EJB 2.0 specification and is
available for use in TopLink with EJB 1.1 beans. EJBQL finders enable a specific
EJBQL string to be specified as the implementation of the query.

Advantages EJBQL offers several advantages in that it:

� is the EJB 2.0 standard for queries

� can be used for most queries

� can be used in dependent object queries

Disadvantages Some complex queries may be difficult to define using EJBQL.

Using Finder Libraries

Defining and Executing Queries 5-7

Creating an EJBQL finder

To create an EJBQL finder
1. Declare the finder on the Home interface.

2. Start the Mapping Workbench.

3. Go to the Queries > Finders > Named Queries tab for the bean.

4. Add a finder and give it the same name as the finder you declared on your
bean's home, and add any required parameters.

5. Select and configure the finder.

Following is an example of a simple EJBQL query that takes one parameter. In this
example, the question mark (“?”) in '?name' is used to bind the argument name
within the EJBQL string.

SELECT OBJECT(employee) FROM Employee employee WHERE (employee.name =?name)

READALL finders
READALL finders allow dynamic creation of queries. These dynamic queries are
generated at runtime instead of at deployment time. Using a READALL finder, a
TopLink ReadAllQuery is passed as a parameter to a finder that returns an
Enumeration.

Creating READALL finders
The implementation for READALL finders is supplied by TopLink for IBM
WebSphere Foundation Library. To make this available to your bean, you will have
to add the following finder definition to the home interface of your bean.

Example 5–12 A READALL query

public Enumeration findAll(ReadAllQuery query) throws RemoteException,
FinderException;

Executing a READALL finder
When using a READALL finder, the query is created on the client.

Advanced finder options

5-8 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Example 5–13 Executing a READALL finder

try {
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addJoinedAttribute("address");
Enumeration employees = getEmployeeHome().findAll(query);

}

Advanced finder options
There are a number of options that can be used by the experienced TopLink
developer. These options should only be used when the developer has a complete
understanding of the consequences of making changes to them.

Caching options
Various configurations can be applied to the underlying query to achieve the correct
caching behavior for the application. There are several ways to control the caching
options for queries.

For most queries, caching options can be set in the Mapping Workbench see
“Caching objects” in Chapter 4 of the Mapping Workbench Reference Guide). For
finders whose queries are manually created (findOneByQuery, findManyByQuery),
caching options must be applied manually using TopLink for Java APIs.

The caching options can be set on a per-finder basis. The valid values are:

ConformResultsInUnitOfWork (default) For finders returning a single result and
finders returning a collection, the 'UnitOfWork' cache for the current JTS
UserTransaction is queried. The finder's results will conform to uncommitted new
objects, deleted objects and changed objects.

CheckCacheByExactPrimaryKey If a finder returning a single object involves an
expression that contains the primary key and only the primary key, the cache is checked.

CheckCacheByPrimaryKey If a finder returning a single object involves an
expression that contains the primary key, a cache hit can still be obtained through
processing the expression against the object in the cache.

CheckCacheThenDatabase A finder returning a single object queries the cache
completely before resorting to accessing the database.

Advanced finder options

Defining and Executing Queries 5-9

CheckCacheOnly For finders returning a single object and finders returning a
collection, only the cache is checked; the database is not accessed.

DoNotCheckCache For finders returning a single object and finders returning a
collection, the cache is not checked.

For more information about TopLink queries as well as the TopLink UnitOfWork
and how it integrates with JTS, see “Chapter 1: Database Sessions” in TopLink: Using
the Foundation Library.

Disabling caching of returned finder results
By default, TopLink adds to the cache all returned objects whose primary keys are
not currently in the cache. This can be disabled if the client knows that the set of
returned objects is very large and wants to avoid the expense of storing these
objects. This option is not configurable through the deployment descriptors, but can
be configured for queries using dontMaintainCache() on the TopLink query API:

...
ExpressionBuilder bldr = new ExpressionBuilder();
ReadAllQuery raq = new ReadAllQuery();
raq.setReferenceClass(ProjectBean.class);
raq.dontMaintainCache();
raq.addArgument("projectName");
raq.setSelectionCriteria(bldr.get("name").
like(bldr.getParameter("projectName")));
...

Refreshing finder results
A finder may return information from the database for an object whose primary key
is already in the cache. When set to true, the refresh cache option in the Mapping
Workbench indicates that the object's non-primary key attributes are refreshed with
the returned information. This occurs on findByPrimaryKey finders as well as all
EXPRESSION and SQL finders for that bean when set at the bean attributes level.

When refreshing is enabled, the refreshIdentityMayResult() method is
invoked on the query. This is configured to automatically cascade private parts. If
behavior other than private object cascading is desired, use a dynamic finder.

Advanced finder options

5-10 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

In the case where an OptimisticLock field is in use, the refresh cache option can
be used in conjunction with a global setting for a bean so that the non-primary key
attributes are refreshed only if the version of the object in the database is newer than
the version in the cache. In the amendment method for a bean, the method
onlyRefreshCacheIfNewerVersion() is called on the passed in TopLink
Descriptor argument.

The following example illustrates how to set
onlyRefreshCacheIfNewerVersion() option for a bean:

public static void addOrderFinders(Descriptor descriptor) {
...
descriptor.onlyRefreshCacheIfNewerVersion();

}
For finders that have no refresh cache setting, the
onlyRefreshCacheIfNewerVersion() method has no effect.

Caution: When issuing refreshing finders while in user transactions,
refreshing the object may cause changes already made to that object to
be lost.

Run time considerations 6-1

6
Run time considerations

This chapter discusses some of the relevant run-time issues surrounding writing an
application that uses TopLink Container-Managed Persistence in the IBM
WebSphere Server container. Other facets of the run-time execution that relate to
EJB’s and the IBM WebSphere Server are beyond the scope of this document and
should be reviewed in the EJB specification and/or the IBM WebSphere Server
documentation.

Transaction support
Entity beans that use container-managed persistence may participate in transactions
that are either client-demarcated or container-demarcated.

Clients of entity beans may directly set up transaction boundaries using the
javax.transaction.UserTransaction interface. Invocations on entity beans are
automatically wrapped in transactions that are initiated by the container based
upon the transaction attributes supplied in the EJB deployment descriptor.

For more information on how to use transactions with EJBs, consult the EJB
specification and the IBM WebSphere Server documentation. The following sections
describe briefly how TopLink participates in EJB transactions.

TopLink within the IBM WebSphere Server
Within the IBM WebSphere Server, TopLink provides a persistence layer for entity
beans. While the IBM WebSphere Server controls all aspects of transaction
management, the TopLink layer is synchronized with the IBM WebSphere
transaction service so that updates to the database are carried out at the appropriate
times.

Transaction support

6-2 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

When updates occur
In general, TopLink does not issue updates to the underlying data store until the
transaction that the enterprise beans are active in begins its two-stage commit
process. This allows for:

� SQL optimizations to ensure that only changed data is written out to the data
store

� Proper ordering of updates to allow for database constraints

Valid transactional states
All modifications to persistent beans and objects should be carried out in the
context of a transaction. The transaction may either be client-controlled or
container-controlled.

The TopLink container does not support modifying beans through their remote
interface when no transaction is active. In this case, TopLink does not write out any
changes to the data. Modifying entity beans without a transaction leads to an
inconsistent state, potentially corrupting the values in the TopLink cache.
Transactional attributes MUST be properly specified in the bean deployment
descriptors, to ensure that data is not corrupted.

Although it is not valid to modify entity beans through their remote interface
without a transaction, in the current release it is permitted to invoke methods on
EJB homes that change the state in the underlying database. Invocation of removes
and creates that are invoked against homes in the absence of a transaction are
permitted.

The following table shows various combinations of container transaction attributes
and client transaction behavior. For each case, it is shown whether or not a
transaction will be active. For those situations that read “no transaction is active,”
no modifications to entity beans should be carried out.

Table 6–1 Container transaction behavior as a function of transaction attribute and
UserTransaction existence

Transaction attribute Client transaction exists No client transaction exists

NotSupported No transaction is active No transaction is active

Supports Transaction is active No transaction is active

Required Transaction is active Transaction is active

RequiresNew Transaction is active Transaction is active

Maintaining bidirectional relationships

Run time considerations 6-3

Situations described above for which “no transaction is active” should be avoided if
entities are to be modified. Bean developers should be particularly careful of using
the Supports transaction attribute, because it leads to a non-transactional state
whenever the client does not explicitly provide a transaction.

Maintaining bidirectional relationships
When one-to-many or many-to-many mappings are bi-directional then the
back-pointers must be correctly maintained as the relationships change. When the
relationship is between an entity bean and a Java object, or when the application is
built to the EJB 1.1 specification (as is the case when using IBM WebSphere
Application Server), the relationship must be maintained manually.

One-to-Many relationship
In a one-to-many mapping, an EmployeeBean might have a number of dependent
phoneNumbers. When a phoneNumber is added to an employee record, the
phoneNumber's back-pointer to its owner (the employee) must also be set.

Example 6–1 Setting the back-pointer in the entity bean

Maintaining a one-to-many relationship in the entity bean involves getting the local
object reference from the context of the EmployeeBean, then updating the
back-pointer. The following code illustrates this technique:

// obtain owner and phoneNumber
owner = empHome.findByPrimaryKey(ownerId);
phoneNumber = new PhoneNumber("cell", "613", "5551212");
// add phoneNumber to the phoneNumbers of the owner
owner.addPhoneNumber(phoneNumber);

Mandatory Transaction is active Exception is raised

Never Exception is raised No transaction is active

Table 6–1 Container transaction behavior as a function of transaction attribute and
UserTransaction existence (Cont.)

Transaction attribute Client transaction exists No client transaction exists

Managing dependent objects

6-4 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

The Employee's addPhoneNumber() method maintains the relationship as follows:

public void addPhoneNumber(PhoneNumber newPhoneNumber) {
//get, then set the back pointer to the owner
Employee owner = (Employee)this.getEntityContext()
.getEJBLocalObject();
newPhoneNumber.setOwner(owner);
//add new phone
getPhoneNumbers().add(newPhoneNumber);

}

Managing dependent objects
The EJB 1.1 specification recommends that entity beans be modeled such that all
dependent objects are regular Java objects and not entity beans. If a dependent or
privately owned object is to be exposed to the client application it must be
serializable (it must implement the java.io.Serializable interface) so that it
may be sent over to the client and back to the server.

Serializing Java objects between client and server
Recall that entity beans are remote objects. This results in a “pass-by-reference”
situation when entity beans are referenced remotely. When an entity bean is
returned to the client, a remote reference to the bean is returned.

Regular Java objects are not remote objects like entity beans are. Instead of a
“pass-by-reference” situation, when regular Java objects are referenced remotely
they are “passed-by-value” and serialized (copied) from the remote machine that
they were originally on.

Managing collections of EJBObjects
Collections typically use the equals() method to compare objects. However, in the
case of a Java object that contains a collection of entities, the EJBObjects do not
respond as expected to the equals() method. In this case, the isIdentical()
method should be used instead. Consequently, you cannot expect the standard
collection methods such as remove() or contains() to work properly when
applied to a collection of EJBObjects.

Managing collections of EJBObjects

Run time considerations 6-5

Several options are available when dealing with collections of EJBObjects. One
option is to create a helper class to assist with collection-type operations. An
example of such a helper is provided in the distribution named
EJBCollectionHelper:

public void removeOwner(Employee previousOwner){
EJBCollectionHelper.remove(previousOwner, getOwners());
}
The implementation of remove() and indexOf() in EJBCollectionHelper is shown in
the next example:

public static boolean remove(javax.ejb.EJBObject ejbObject, Vector vector) {
int index = -1;
index = indexOf(ejbObject, vector);
// indexOf returns -1 if the element is not found.
if(index == -1){

return false;
}
try{

vector.removeElementAt(index);
} catch(ArrayIndexOutOfBoundsException badIndex){

return false;
}
return true;

}
public static int indexOf(javax.ejb.EJBObject ejbObject, Vector vector) {

Enumeration elements = vector.elements();
boolean found = false;
int index = 0;
javax.ejb.EJBObject current = null;
while(elements.hasMoreElements()){

try{
current = (javax.ejb.EJBObject)
elements.nextElement();
if(ejbObject.isIdentical(current)){

found = true;
break;

}
}catch(ClassCastException wrongTypeOfElement){

Note: This issue does not arise in the case of an entity containing a
collection of entities, because a special EJB 2.0 container collection is used
which handles equality appropriately.

Managing collections of EJBObjects

6-6 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

. . .
}catch (java.rmi.RemoteException otherError){

. . .
}
index++; //increment index counter

}
if(found){

return index;
} else{

return -1;
}

}
If JDK 1.2 is used, a special Collection class could be created that uses
isIdentical() instead of equals() for all its comparison operations. For
isIdentical() to function correctly, the equals() method must be properly
defined for the primary key class.

Customization 7-1

7
Customization

With container-managed persistence (CMP), many aspects of persistence are
handled transparently by the EJB “container”. Other properties may be configured,
as required, in the bean deployment descriptors (see "Configuring entity bean
deployment descriptors" on page 4-2). The intent is to minimize the amount of
persistence code that the EJB developer has to write.

However, there are cases where a bean developer or deployer wants to take
advantage of advanced features that require additional customization and
configuration of bean deployment.

TopLink Container-Managed Persistence provides a number of entry points for
advanced customization of mappings, logins, and other aspects of persistence.
These can be used to take advantage of advanced TopLink features, JDBC driver
features, or to gain “low-level” access to TopLink for Java APIs that are normally
masked in the container-managed persistence layer.

Customizing TopLink descriptors and mappings
TopLink projects and descriptors are normally created using the TopLink Mapping
Workbench. The output of the TopLink Mapping Workbench tool is an XML file that
contains all of the mapping information required to store beans and persistent
objects in the database.

Some customizations available to the TopLink descriptors that make up the project
cannot be configured using the Mapping Workbench. In these situations, customize
the mapping information by specifying an amendment method to be run at deployment

Note: For basic information about TopLink descriptors and mappings,
see the Oracle9iAS TopLink Mapping Workbench Reference Guide.

Customizing TopLink descriptors and mappings

7-2 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

time. Each TopLink descriptor can have an amendment method.The TopLink
descriptor can also be modified through a Session amendment class because the
TopLink descriptors are available through the session. For more information, see
"Customizing TopLink descriptors with amendment methods" on page 7-4.

Alternatively, the TopLink Mapping Workbench can be bypassed entirely, and
create all the mappings directly in Java code. With this approach, any
customizations can be made directly in the source code.

Creating projects and TopLink descriptors in Java
Creating mappings and TopLink descriptors directly in Java code provides access to
features that are not available in TopLink Mapping Workbench.

To define a project using Java code:

1. Implement a project class that extends the
oracle.toplink.sessions.Project class.

2. Compile the project class.

3. Edit the toplink-ejb-jar.xml deployment descriptor so that the value for the
<project-class> element is the fully-qualified Project class name. For more
about creating project classes, see the Oracle9iAS TopLink Mapping Workbench
Reference Guide.

The following example illustrates how TopLink projects can be specified in code.

/**
* The class EmployeeProject is an example of a TopLink project defined in Java
code. The individual parts of the project - the Login and the descriptors, are
built inside of methods that are called by the constructor. Note that
EmployeeProject extends the class oracle.toplink.sessions.Project.
*/
public class EmployeeProject extends oracle.toplink.sessions.Project{

Note: The TopLink Mapping Workbench can be used to create a Java
Project class from an existing project which can be used as a starting
point for a custom project class. See the Oracle9iAS TopLink Mapping
Workbench Reference Guide for more information.

Also note that the TopLink Mapping Workbench has an Export Project to
Java Source... option which can be used as starting point for coding the
project class manually.

Customizing TopLink descriptors and mappings

Customization 7-3

/**
* Supply a zero argument constructor that initializes all aspects of the
project. Make sure that the login and all the descriptors are initialized and
added to the project.
*/
public EmployeeProject(){
applyPROJECT();
applyLOGIN();
buildAddressDescriptor();
buildEmployeeDescriptor();
// other methods to build all descriptors for the project
/**
* Project-level properties, such as the name of the project, should be specified
here.
*/
protected void applyPROJECT(){
setName("Employee");
}
protected void applyLOGIN()
{
oracle.toplink.sessions.DatabaseLogin login = new
oracle.toplink.sessions.DatabaseLogin();

// use platform appropriate for underlying database
login.setPlatformClassName("oracle.toplink.internal.databaseaccess.
OraclePlatform");

// if no sequencing is used, setLogin() will suffice
setLoginAndApplySequenceProperties(login);
}

/**
* Descriptors are built by defining table info, setting properties (caching,
etc.) and by adding mappings to the descriptor.
*/
protected void buildEmployeeDescriptor() {
oracle.toplink.publicinterface.Descriptor descriptor =
new oracle.toplink.publicinterface.Descriptor();

// SECTION: DESCRIPTOR
// specify the class to be made persistent
descriptor.setJavaClass(examples.ejb.cmp11.advanced.EmployeeBean.class);

Customizing TopLink descriptors and mappings

7-4 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

// specify the tables to be used and primary key
Vector tables = new Vector();
tables.addElement("EJB_EMPLOYEE");
descriptor.setTableNames(tables);
descriptor.addPrimaryKeyFieldName("EJB_EMPLOYEE.EMP_ID");

// SECTION: PROPERTIES
descriptor.setIdentityMapClass(
oracle.toplink.internal.identitymaps. FullIdentityMap.class);
descriptor.setExistenceChecking("Check cache");
descriptor.setIdentityMapSize(100);

// SECTION: COPY POLICY
descriptor.createCopyPolicy("constructor");

// SECTION: INSTANTIATION POLICY
descriptor.createInstantiationPolicy("constructor");

// SECTION: DIRECTTOFIELDMAPPING
oracle.toplink.mappings.DirectToFieldMapping firstNameMapping = new
oracle.toplink.mappings .DirectToFieldMapping();
firstNameMapping.setAttributeName("firstName");
firstNameMapping.setIsReadOnly(false);
firstNameMapping.setFieldName("EJB_EMPLOYEE.F_NAME");
descriptor.addMapping(firstNameMapping);

// … Additional mappings are added to the descriptor using the addMapping()
method.
},}
After the TopLink project is written and compiled, it can be used in deployment.
You can specify the project class to be used instead of a project file by filling in the
project-class element in the toplink-ejb-jar.xml deployment descriptors
for your entity beans.

Customizing TopLink descriptors with amendment methods
The TopLink descriptor of any persistent class can be modified when the descriptor
is first instantiated. For container-managed persistence, this happens when the
entity beans are deployed into the EJB server.

Amendment methods are static methods that are run at deployment time and allow
for arbitrary descriptor customization code to be run.

For more information on amendment methods, see the Oracle9iAS TopLink Mapping
Workbench Reference Guide.

Working with TopLink ServerSession and Login

Customization 7-5

Working with TopLink ServerSession and Login
TopLink interacts with databases using two key components:

� The ServerSession is a TopLink component that interacts with the underlying
database on behalf of the application.

� The DatabaseLogin contains connection information and settings that are
specific to the underlying database.

Understanding ServerSession
In TopLink container-managed persistence support, the ServerSession is
normally hidden from the EJB developer because interaction with the database is
performed transparently by the EJB container (via TopLink). The ServerSession is
still present “behind-the-scenes”, but plays a lesser role in its direct interaction with
the EJB application.

The ServerSession handles all aspects of persistence, such as caching, reading and
writing.

Understanding DatabaseLogin
Databases typically require a valid username and password to login successfully. In
a TopLink application, this login information is stored in the DatabaseLogin class.
All sessions must have a valid DatabaseLogin instance before logging in to the
database.

For more information on DatabaseLogin, see “Database Sessions” in the
Oracle9iAS TopLink Foundation Library Guide.

Customizing ServerSession and DatabaseLogin
A session amendment class can be used to configure the ServerSession and
DatabaseLogin in ways not available through the deployment descriptor file.

The ServerSession and DatabaseLogin may need to be customized for any of the
following reasons:

� You need to specify special settings for the JDBC driver, such as to use parameter
binding or to use a different data conversion routine to work with an
incompatible driver

� You wish to directly access regular TopLink for Java features, such as database
connections or caching

Working with TopLink ServerSession and Login

7-6 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

� You want to define custom finder queries on one or more TopLink descriptors.

Other settings that can be applied to the ServerSession and DatabaseLogin are:

� Native SQL support — required if your JDBC bridge does not support the JDBC
standard SQL syntax

� Binding and parameterized SQL — these options determine whether values are
inlined directly into the generated SQL or are parameterized

� Batch writing — allows groups of insert/update/delete statements to be sent to
the database in a single batch

� Optimizing data conversion

Additional configuration changes
You can register a session listener class that extends
oracle.toplink.sessions.SessionEventAdaptor to listen for various session
events, such as pre_login, post_commit_unit_of_work, and so on. The listener
is registered to the TopLink session by defining the <event_listener_class> tag
in the toplink-ejb-jar.xml file. For example:

<session>
<event_listener_class>
oracle.toplink.ejb.cmp.demos.sessionlistener
</event_listener_class>

</session>

The Single Bean Example Application 8-1

8
The Single Bean Example Application

TopLink includes several TopLink EJB 1.1 CMP example applications for
WebSphere in the \examples directory:

� Single Bean

� Relationships

� Advanced

See <INSTALL_DIR>/doc/demos.html for links to all the examples and details
on configuring the examples for WebSphere Application Server.

This chapter details how the Single Bean example is built. Although the Single Bean
example involves persisting just one entity bean, the information provided on
development, configuration and deployment is the same as is needed for more
complex multi-bean applications.

Understanding the Single Bean example
The Single Bean example application shows how a single bean can be made
persistent using TopLink Container-Managed Persistence container managed
persistence support. This example illustrates simple direct-to-field mappings and
introduces the basic steps required to deploy a bean. The example consists of an
entity bean called AccountBean.

The example is configured to on the IBM WebSphere Application Server.

The Single Bean example application demonstrates:

� The use of an entity bean in an application

� That persistence-related code is not required in the entity bean

Understanding the Single Bean example

8-2 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

� That implementation of ejbFind methods is not required in the entity bean (in
the example, query logic for each finder method included in the home interface
is defined using the Mapping Workbench or in an amendment method)

� The use of the TopLink deployment XML file, which contains bean-to-database
mapping meta information

� How TopLink transparently manages persistence for beans when they are being
created, updated, removed, and queried

The Client application performs the following steps:

� Creates a simple AccountBean instance, makes a deposit and a withdrawal from
the account

� Populates the database with several account bean instances

� Finds all accounts in the database whose balances are greater than the provided
sum

� Finds an account in the database whose owner matches a provided search
string

� Removes all accounts created

The Object model
The Single Bean example provides a simplified view of the standard “bank account”
example, and shows how a single class can be modeled as an entity bean and made
persistent using TopLink.

The interface
examples.ejb.cmp11.singlebean.Account provides the public interface for the
bean. It extends the javax.ejb.EJBObject interface, and contains all of the
business methods that are accessible to clients of the entity. This includes getters
and setters for the instance data, as well as deposit() and withdraw() methods.

The class
examples.ejb.cmp11.singlebean.AccountBean provides the actual bean
implementation for the bank account. It has methods corresponding to the methods
on the remote interface, as well as the methods required by the
javax.ejb.EntityBean interface, which it extends. The AccountBean's fields
include accountId (String), balance (double), and owner (String).

Entity Development

The Single Bean Example Application 8-3

The home interface
examples.ejb.cmp11.singlebean.AccountHome provides the “home” interface
of the bean. It extends the javax.ejb.EJBHome interface, and defines the required
create, remove, and finder methods.

Figure 8–1 Structure of the Single Bean Example

Database schema
The Account data is stored in a single table.

Entity Development
A deployable component is typically developed as follows:

� Create the interfaces.

� Create and implement the bean classes.

� Create the deployment descriptors.

� Map the entities to the database.

Table 8–1 The EJB11_ACCOUNT table

Column Name Column Type Details

ACCOUNT_ID VARCHAR primary key

BALANCE DOUBLE / NUMERIC balance in account

OWNER VARCHAR owner's name

HTML

Main Page

Search Results

JSP

Main Page

Find Accounts

Create Account

Remove Account

EJB

Account

Entity Development

8-4 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

� Generate code for deployment.

� Deploy the EAR file.

� Run the client.

Create the interfaces
Each entity can contain either a home or remote interface, or both. These interfaces
dictate how the bean is used by other components of the application. The Account
interfaces required for the Single Bean example are located in the
was/examples/ejb/cmp11/singlebean example directory.

Create and implement the bean classes
Define instance variables for each CMP field and corresponding get and set
methods. Also implement business methods on the bean. The AccountBean class
required for the Single Bean example is located in the
was/examples/ejb/cmp11/single bean example directory.

Create the deployment descriptors
A JAR file requires an ejb-jar.xml and a toplink-ejb-jar.xml. The EAR file
requires other descriptors, as do client application JAR files. The WebSphere AAT or
other tools can be used to generate all but the toplink-ejb-jar.xml. The
developer must manually create this TopLink deployment descriptor.

The TopLink deployment descriptor: toplink-ejb-jar.xml
The TopLink deployment descriptor is included in the EJB JAR in the same
META-INF directory as the ejb-jar.xml and the ibm extension files. This
descriptor provides the information that TopLink needs to deploy the entities in the
EJB JAR.

Because the entities deployed in a EJB JAR are all encompassed by a TopLink
project, the deployment JAR file is associated with exactly one project. This project
is in turn associated with exactly one TopLink session (as implied by the single
session element in the descriptor).

The elements that have been modified for the Single Bean example in the
toplink-ejb-jar.xml file are:

<name> A session name (unique among all deployed JARs) that is used as a key
for the deployed TopLink project (or the JAR that contains the project).

Entity Development

The Single Bean Example Application 8-5

<project-xml> project deployment XML file that can be stored either in the
deployable JAR file at the root directory or left on the file system.

<session-type> The session type should always be set to <server-session/>.

<platform-class> The class specified controls the format of the SQL generated and
other database specific behavior.

<uses-external-connection-pool> and <uses-external-transaction-controller> For
TopLink to participate in WebSphere JTS transactions these should be both set to
true.

<external-transaction-controller-class> This is the TopLink server-specific JTS
controller class required when using external transaction control. For WebSphere 4.0
use oracle.toplink.jts.was.
JTSExternalTransactionController_4_0.

<enable-logging> When set to true, TopLink will print logging information for
several of its operations. This is very useful for debugging.

<logging-options> Options for different levels of TopLink logging.

For more information, see the toplink-was-ejb-jar_903.dtd.

Map the entities to the database
This section describes the steps required to create the Account project using the
Mapping Workbench.

For more information about creating projects using the Mapping Workbench,
consult the Oracle9iAS TopLink Mapping Workbench Reference Guide.

This section assumes you have already read and completed the introductory
tutorials in Oracle9iAS TopLink Tutorials, which offers an introduction to the
fundamental concepts of the Mapping Workbench.

Note: You can use a <project-class> element rather than a
<project-xml> if you choose. With the <project-class> element,
specify the fully-qualified name of the TopLink project class. This class
should be included in the deployable JAR file. The project class can
either be generated by the Mapping Workbench or written manually.

Entity Development

8-6 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Creating a TopLink project
A TopLink project defines how the entity beans are persisted to the database. The
Mapping Workbench enables you to easily build a TopLink project. The project is
specified in the toplink-ejb-jar.xml in the <project-class> or
<project-xml> element and used at run time to persist the beans.

To create a TopLink project:
1. Click File > New Project to start a new project.

2. In the General tab, set the Persistence Type to 1.1 CMP.

3. Optionally, specify an ejb-jar.xml file to use for the project. For EJB 1.1
projects it is not required or even desirable to specify and ejb-jar.xml file
here since under the EJB 1.1. specification the ejb-jar.xml file contains no
mapping information that is not readily available in the bean classes.

For the Mapping Workbench to be able to read and update the ejb-jar.xml, it
must have the EJB 2.0 DTD its DOCTYPE element. See “Working with the
ejb-jar.xml file” in the Mapping Workbench Reference Guide for details on working
with the ejb-jar.xml file.

4. In the General tab, specify a project classpath. The project classpath should
contain the classes to be added to the project and interfaces associated with
those classes. Classes to be added to the project include bean classes and
referenced classes. Bean interfaces do not have to be added to the project, but
must appear in the project classpath.

5. To add the beans to the project, click Selected > Add/Refresh Classes.

6. To specify the beans classes as bean descriptors, click Selected > Descriptor
Type > EJB Descriptor.

Note: The complete Account project is available in the
was/examples/ejb/cmp11/singlebean/mw directory and can be
opened and examined with the Mapping Workbench.

Note: Bean classes must to be added to the project at this point (for
example, the Single Bean example requires the AccountBean class);
however, referenced classes are not required.

Entity Development

The Single Bean Example Application 8-7

7. Create database tables. The Single Bean example application uses an EJB11_
ACCOUNT table to persist the bean. Ensure that the ACCOUNT_ID is the
primary key in the EJB_ACCOUNT table.

The table can either be imported from the database or created in the Mapping
Workbench. For more information on working with tables, see “Working with
database tables” in the Oracle9iAS TopLink Mapping Workbench Reference Guide.

8. To associate AccountBean with a table, select the AccountBean and set the EJB_
ACCOUNT table as the associated table in the Descriptor Info tab.

9. Map the CMP fields. The AccountBean has three CMP fields to be mapped
using direct-to-field mappings: accountId, balance, and owner. Map them to
their corresponding database fields in the EJB11_ACCOUNT table.

10. Create queries for finders. The AccountHome defines two finders that must be
defined: findByOwner and findLargeAccounts. The Queries tab of the
AccountBean descriptor is used to define a query for each finder on the
AccountHome. Each query requires:

� The name of the query

� The Type of query depending on whether the query returns a single bean or
a collection of beans

� The query format (one of SQL, EJBQL, or TopLink's expression framework)

� The Query String used for SQL or EJBQL query strings. If TopLink's
expression framework is used then the query must be defined in a
descriptor after-load method

� Parameters and Options

11. Export a project to be used at runtime. The project can be written out as a Java
class which has to be compiled and included with the deployment JAR or an
XML file. In the toplink-ejb-jar.xml file, use either the <project-class>
or <project-xml> depending on which export method was used.

Note: The finder findByPrimaryKey is implemented by TopLink and
does not require a user implementation.

Entity Development

8-8 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Generate code for deployment
The Single Bean example is packaged into an EAR file, which itself contains the
following:

� A deployable EJB 1.1 JAR file containing the interface and abstract bean classes,
the classes (RMI stubs and implementation classes) generated by IBM's
deploytool and TopLink's deploytool, and the deployment descriptor XML files.

� A client JAR containing the client code.

The TopLink deployment code generation tool must be used instead of WebSphere's
to generate the deployable JAR file. The generated code contains callbacks to the
TopLink persistence framework which makes CMP possible. TopLink’s deploytool
takes a non-deployed EJB 1.1 JAR as input, generates the TopLink-specific CMP
code and calls the WebSphere deploytool for code generation.

EJB 1.1 JAR files can be created by any of a combination of the following tools:

� VisualCafe 4.5 with WebSphere 4.0 Integration plugin

� WebSphere Application Assembly Tool

� WebSphere Studio Application Developer (WSAD)

� VisualAge for Java (VAJ)

� JDK packaging tools

TopLink's deploytool can be launched from the TopLink CMP Deployment Tool or
from the command line.

In Windows, the deploy tool can be opened from the Start menu by clicking
Start > Programs > Oracle9iAS TopLink > Tools > Deploy Tool for WebSphere
Server. The deploy tool can be used with WebSphere Application Server or with
WebSphere Studio Application Developer.

An Ant-based build script is included with the example application, which
disassembles an EAR file, calls TopLink code generation on the JAR file, and
reassembles the EAR file. A copy of the deployable JAR is placed in the server's
installableApps\ directory.

Deploy the EAR file
You can deploy the EAR file several different ways (see the WebSphere Server
documentation for more detailed information on how to deploy a EAR file into the
server).

Entity Development

The Single Bean Example Application 8-9

The Single Bean example is configured to run against the local HSQL database.
Ensure that the HSQL database server is started before starting the application on
the server. Also ensure that the HSQL toplink.examples.datasource is
configured in the server before installing the application on the server. See the
examples configuration documentation in the examples/ directory for details.

Run the client
Included in the Single Bean directory, is a runClient.cmd which can be used to run
the client.

Entity Development

8-10 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

EJB Architectures Summary A-1

A
EJB Architectures Summary

Enterprise JavaBeans present a way to build components as well as a means to
make these components exist in a transactional, secure, and distributed
environment. However, a single bean represents only one component - and
consequently only one part of a complete application. EJB provides developers with
flexibility in determining how these components should be made to work together.
There are a number of ways in which Enterprise JavaBeans can be made to work
together to form a complete enterprise application. TopLink can be integrated into
each variety of EJB application architecture to provide both the technology that
enables these architectures and the features that add value to them.

This chapter gives an overview of some of the basic design patterns available when
using TopLink and TopLink CMP. It is not meant to be prescriptive and neither is it
complete. It briefly suggests some of the more useful EJB designs and their
suitability to specific applications. Architects and developers may find these
sections useful at the early stages of application design. As more experience is
acquired the appropriateness of particular patterns will become more obvious, and
architectural decisions will be more intuitively reached.

Note: Although discussed in the context of EJB 2.0, the architectures
presented in this chapter are still valid in an EJB 1.1 environment. Any
time entity beans are mentioned in terms of their local interface, these
can be replaced with beans using their remote interface. The only
downside to this strategy is the extra overhead involved with remotes.

Introduction to EJB architectures

A-2 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Introduction to EJB architectures
The basic ways in which EJBs can be assembled, or the basic “EJB architectures”,
can be described in terms of which kinds of beans or J2EE components are used,
how client applications access them, and how the underlying “domain objects” are
represented. The EJB architectures can be fundamentally divided into three
categories: an Entity bean architecture, a Session bean architecture, and a Session
and Entity “tiered” approach. Each basic architecture also has variations and
refinements and can be decorated with a variety of J2EE components.

The EJB specification does not dictate how enterprise entities are used, but it is clear
from the evolution of the specification that certain architectures were assumed to be
dominant. Some of the recommended architectures are explained in the J2EE
Blueprints (see http://java.sun.com/blueprints). These documents should be
reviewed for more information about J2EE and EJB architectures.

Remote Entities
If entities alone are used then they must have remote interfaces that expose all of
the client servicing methods. In the absence of Session beans, the client may only
access entity state through its remote interface, and may not traverse relationships,
except as encapsulated by remote method calls. Only remote references and data
may be returned by these calls. Finders may only return remote references as well.

Figure A–1 Remote entities architecture

Clients gain from this approach in that the distribution of the entities is transparent.
Clients reference the entities as if they were local, and do not need to worry about
location. Entities can exist at different locations without the client even being aware
of it.

The converse of transparent distribution is that if clients are not aware of the
distributed nature of the entities then they may not be aware of the cost of invoking
them. If the entities are “fine-grained” objects then each fine-grained method
invocation on them will end up being a remote call. The accumulation of these

Fat Client

Server

Entity

Entity

Introduction to EJB architectures

EJB Architectures Summary A-3

remote method invocations could sum up to a potentially serious network or
communication latency cost.

If Container transactions are used for each entity operation a separate transaction
will end up being initiated for each method invocation. This could introduce
excessive and unnecessary transaction management overhead if client-demarcated
UserTransactions are not used.

Since Entity beans are intended to be “components” there are more restrictions
placed on them than on regular Java objects (e.g. thread-spawning is disallowed).
This may impose limits on how they can be used to model certain domain concepts.
The limitations should be well understood and compared against the model to
ensure that they are not discovered too late in the design phase.

In general, however, this architecture is less desirable than other architecture types.
The relationship limitations imposed by the EJB specification are often an
impediment to using this approach.

Advantages
� Increased distribution

� Potential for greater location transparency

Disadvantages
� Not suitable for fine-grained entities

� Communication overhead for each method call

� Transactional costs of each method call

� Client accesses many EJB interfaces (no single client interface or point of server
entry)

� Much of the business logic must reside on the client

Remote Session beans
It is common practice to apply a Session bean layer in front of lightweight objects.
This may take the form of the session façade pattern described below, with
lightweight entities or other types of persistent objects being managed.

Introduction to EJB architectures

A-4 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Figure A–2 Remote session beans architecture

Since Session beans do not themselves represent durable objects, often a session
façade pattern will be used to converse directly with persistent Java objects, without
the use of entities. Persistent data can be modeled using regular TopLink-enabled
persistent Java objects that are managed by the Session beans and mapped using
TopLink tools. Since few domain objects actually “live” on the client, client
applications rarely need to access the domain objects directly, but if regular objects
are used then they may be sent to the client if necessary since no such restriction
exists for them. The Session beans are used to carry out most of the application
logic. Stateful beans are used for those operations for which client-identity is
important, while stateless Session beans can be used for “single-shot” operations.
All of the EJB benefits of security, transactions and distribution are available
through the Session beans.

The exclusive use of Session beans does not allow for overly complex client
behavior - all client behavior is limited to services provided by the Session beans.
Simple client behavior is a general characteristic of all thin client architectures.

Simplicity and fast client access are clear benefits of this approach. In addition, there
is great flexibility in how the domain objects are designed, and how these objects
are mapped to the underlying relational database tables.

Advantages
� Location transparency on session interface

� Fine-grained persistent object operations can be “batched” or combined into a
single session bean call to reduce communication overhead

� High performance storage/retrieval of persistent objects

� EJB features available through single point of session bean entry to reduce
Container overhead

Client

Server

Session

Java
Object

Java
Object

Introduction to EJB architectures

EJB Architectures Summary A-5

� Can relate persistent objects

� Can pass persistent objects to the client side if necessary

Disadvantages
� Fine-grained client calls may require explosion of session interface calls

� Persistent Java objects not included in EJB specification

Session Façade - Combining Session and Entity beans
The majority of systems have relationships between application entities. This being
the expected scenario, it is well observed and explained by J2EE designers. More
common, however, is to incorporate the domain logic into the session bean itself.
This migrates the business logic from the client to the server which provides a
number of well-known benefits including ease of maintenance, convenient
upgradability, and increased access to server features.

Regardless of whether the session bean simply forwards operations to entities or
actually includes the application logic as a façade that fronts the local entities it is a
modular approach to remotely accessing server-side objects. It is also likely to be
easier to maintain as the J2EE specification moves forward, since session beans tend
to experience change to a lesser degree than other components, such as entities. The
decision to use a stateful or stateless session bean will likely depend on the amount
of business logic incorporated into the session bean.

Figure A–3 Session façade architecture

Client

Server

Session

Entity

Entity

Dependent Java Objects

A-6 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Advantages
� Location transparency on session interface

� Fine-grained entity operations can be “batched” or combined into a single
session bean call to reduce communication and transaction overhead

� Inter-entity method calls are pass-by-reference

� Can maintain entity relationships

� All components described by EJB specification

� Flexibility to create new (local) transactions on specific method calls when
required·

Disadvantages
� Fine-grained client calls may require explosion of session interface calls

� Some Container overhead still incurred on each local entity call

Dependent Java Objects
Because of TopLink's ability to persist regular Java objects without the need for EJB
container support these objects offer the most flexibility. They do not incur the
entity costs of container management but can be persisted independent of the entity.
This means that changes are detected at commit-time, but if nothing changes during
the course of an entity update then the object will not be written back, and likewise
only the object may be written out if the reverse is true. The dependency upon the
entity is still intact, however, as any removal of the entity will automatically
propagate to cause the dependent Java object to be removed from persistent storage.
Like serializable value objects, they can be transported back and forth between the
client and server, allowing for client interactions that refer to the owning bean, but
operate on the dependent data. These objects are not supported in the EJB
specification, but do offer the benefits of managed, mapped persistence.

Conclusion

EJB Architectures Summary A-7

Figure A–4 Using dependent Java objects in a system

Conclusion
EJB provides developers with a great deal of infrastructure that makes building
enterprise applications easier. This allows developers to build better applications by
allowing them to focus on the business logic of their application rather than on
distribution, security, and transactions. Even with everything that EJB provides,
developing with EJB requires intelligent architectural choices to be made. Although
EJB provides much, it also allows for flexibility so that developers can use it to meet
their needs.

Regardless of the EJB architecture used, TopLink will support it by providing the
right level of control and transparence appropriate to the architecture. The TopLink
persistence framework also adds the value required to customize applications to
run at their best, and will play an essential role in enabling customers to
successfully develop and deploy their enterprise applications.

Entity

Dependent
Object

Dependent
Object

Dependent
Object

Conclusion

A-8 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

The toplink-ejb-jar DTD B-1

B
The toplink-ejb-jar DTD

This appendix offers a listing of the toplink-ejb-jar document type description
(DTD).

DTD listing
<!--This is the root element and exists only for XML structure-->
<!ELEMENT toplink-configuration (session* , session-broker*)>

<!--This element used if a session broker must be configured-->
<!ELEMENT session-broker (name , session-name+)>

<!--This is the element that represents the session name-->
<!ELEMENT session-name (#PCDATA)>

<!--This is the node element that describes a particular session for use within
toplink-->
<!ELEMENT session (name , (project-class | project-xml) , session-type , login?
, cache-synchronization-manager? , event-listener-class* , profiler-class? ,
external-transaction-controller-class? , exception-handler-class? ,
connection-pool* , enable-logging? , logging-options?)>

<!--This is the type of session that is being configured-->
<!ELEMENT session-type (server-session | database-session)>

<!ELEMENT server-session EMPTY>

<!ELEMENT database-session EMPTY>

<!--This is the class name that this session will load to provide login and
mapping information-->
<!ELEMENT project-class (#PCDATA)>

DTD listing

B-2 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

<!--This is the file that contains the project that this session will load to
provide login and mapping information-->
<!ELEMENT project-xml (#PCDATA)>

<!--This is the element that is used if the session will be synchronized with
others-->
<!ELEMENT cache-synchronization-manager (clustering-service , multicast-port? ,
multicast-group-address? , packet-time-to-live? , is-asynchronous? ,
should-remove-connection-on-error? , (jndi-user-name , jndi-password)? ,
jms-topic-connection-factory-name?, jms-topic-name?,
naming-service-initial-context-factory-name?,naming-service-url?)>

<!--This is the name of the clustering service that will be used for connecting
sessions for Cache Synchronization-->
<!ELEMENT clustering-service (#PCDATA)>

<!--This is the IP that the Clustering Service will be listening for new session
anouncements-->
<!ELEMENT multicast-group-address (#PCDATA)>

<!--This is the multicast port the the clustering service will be listening on
for announcements of new sessions-->
<!ELEMENT multicast-port (#PCDATA)>
<!ATTLIST multicast-port e-dtype NMTOKEN #FIXED 'number' >

<!--Set to true if synchronization should not wait until all sessions have been
synchronised before returning-->
<!ELEMENT is-asynchronous (#PCDATA)>

<!--Set to true if the connection should be removed from this session if a
communication error occurs-->
<!ELEMENT should-remove-connection-on-error (#PCDATA)>

<!--This is the JNDI name of the Topic Connection Factory that was created for
synchronizing TopLink Sessions-->
<!ELEMENT jms-topic-connection-factory-name (#PCDATA)>

<!--This is the JNDI name of the Topic that was created for synchronizing
TopLink Sessions-->
<!ELEMENT jms-topic-name (#PCDATA)>

<!--This is the name of the initial context factory that will be included in the
Context Properties when creating an initial context for accessing JNDI-->
<!ELEMENT naming-service-initial-context-factory-name (#PCDATA)>

DTD listing

The toplink-ejb-jar DTD B-3

<!--The URL to the global Namespace for the Synchronization connection. Usually
the URL of the JNDI service-->
<!ELEMENT naming-service-url (#PCDATA)>

<!--The maximum number of hops a packet will be broadcast-->
<!ELEMENT packet-time-to-live (#PCDATA)>
<!ATTLIST packet-time-to-live e-dtype NMTOKEN #FIXED 'number' >

<!--This element used if a user name is required to access the JNDI service in
the case of Cache Synchronization-->
<!ELEMENT jndi-user-name (#PCDATA)>

<!--This element used if a password is required to access the JNDI service in
the case of Cache Synchronization-->
<!ELEMENT jndi-password (#PCDATA)>

<!--This describes one of possibly many event-listeners that can be registered
on the session-->
<!ELEMENT event-listener-class (#PCDATA)>

<!--This element represents the class name of the profiler that will be used by
the session-->
<!ELEMENT profiler-class (#PCDATA)>

<!--This is the class that the session will use as the external transaction
controller-->
<!ELEMENT external-transaction-controller-class (#PCDATA)>

<!--This is the class that the session will use to handle exceptions generated
from within the session-->
<!ELEMENT exception-handler-class (#PCDATA)>

<!--SQL will be logged to the Session writer which, by default, is System.out-->
<!ELEMENT enable-logging (#PCDATA)>

<!--This element used to specify the extra logging options-->
<!ELEMENT logging-options (log-debug? , log-exceptions? ,
log-exception-stacktrace? , print-thread? , print-session? , print-connection? ,
print-date?)>

<!--Debug messages will be logged-->
<!ELEMENT log-debug (#PCDATA)>

<!--exceptions will be logged-->

DTD listing

B-4 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

<!ELEMENT log-exceptions (#PCDATA)>

<!--exceptions stack traces will be logged when they occur-->
<!ELEMENT log-exception-stacktrace (#PCDATA)>

<!--Each line of the log will contain the connection id-->
<!ELEMENT print-connection (#PCDATA)>

<!--each line of the log will contain the date-->
<!ELEMENT print-date (#PCDATA)>

<!--each line of the log will contain the session id-->
<!ELEMENT print-session (#PCDATA)>

<!--each line of the log will contain the thread id-->
<!ELEMENT print-thread (#PCDATA)>

<!--This the node element that stores the information for the connection
pools-->
<!ELEMENT connection-pool (is-read-connection-pool , name , max-connections? ,
min-connections? , login)>

<!ELEMENT is-read-connection-pool (#PCDATA)>

<!--The max number of connections that will be created in the pool-->
<!ELEMENT max-connections (#PCDATA)>
<!ATTLIST max-connections e-dtype NMTOKEN #FIXED 'number' >

<!--The min number of connections that will aways be in the pool-->
<!ELEMENT min-connections (#PCDATA)>
<!ATTLIST min-connections e-dtype NMTOKEN #FIXED 'number' >

<!--This is the node element that represents the login for a particular
connection pool. The read and write connection pools will use the login from
the project-->
<!ELEMENT login (license-path? , driver-class? , (connection-url | datasource)?
, platform-class? , user-name? , password? , uses-native-sequencing? ,
sequence-preallocation-size? , sequence-table? , sequence-name-field? ,
sequence-counter-field? , (should-bind-all-parameters ,
should-cache-all-statements?)? , uses-byte-array-binding? , uses-string-binding?
, uses-streams-for-binding? , should-force-field-names-to-uppercase? ,
should-optimize-data-conversion? , should-trim-strings? , uses-batch-writing? ,
uses-jdbc20-batch-writing? , uses-external-connection-pool? , uses-native-sql? ,
uses-external-transaction-controller? , ((non-jts-connection-url |
non-jts-datasource), uses-sequence-connection-pool?)?)>

DTD listing

The toplink-ejb-jar DTD B-5

<!--This is the element that represents the platform class name-->
<!ELEMENT platform-class (#PCDATA)>

<!--This is the element that represents the database driver class name-->
<!ELEMENT driver-class (#PCDATA)>

<!--This is the URL that will be used to connect to the database-->
<!ELEMENT connection-url (#PCDATA)>

<!--This is the URL of a datasource that may be used by the session to connect
to the database-->
<!ELEMENT datasource (#PCDATA)>

<!--This element used if a read-only datasource is required for cache
synchronization (usually used within an application server)-->
<!ELEMENT read-only-datasource (#PCDATA)>

<!--This element is used in the login as well as the Cache Synchronization
feature-->
<!ELEMENT user-name (#PCDATA)>

<!--This element is used in the login as well as the Cache Synchronization
feature-->
<!ELEMENT password (#PCDATA)>

<!--Set to true if the login should use native sequencing-->
<!ELEMENT uses-native-sequencing (#PCDATA)>

<!--Sets the sequencing pre-allocation size. This is the number of sequences
that will be retrieved from the database each time-->
<!ELEMENT sequence-preallocation-size (#PCDATA)>
<!ATTLIST sequence-preallocation-size e-dtype NMTOKEN #FIXED 'number' >

<!--The name of the sequence table-->
<!ELEMENT sequence-table (#PCDATA)>

<!--The field within the sequence table the stores that the sequence name-->
<!ELEMENT sequence-name-field (#PCDATA)>

<!--The field within the sequence table that stores the -->
<!ELEMENT sequence-counter-field (#PCDATA)>

<!--Set to true if all queries should bind all parameters-->
<!ELEMENT should-bind-all-parameters (#PCDATA)>

DTD listing

B-6 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

<!--Set to true if all statements should be cached-->
<!ELEMENT should-cache-all-statements (#PCDATA)>

<!--Set to true if byte arrays should be bound-->
<!ELEMENT uses-byte-array-binding (#PCDATA)>

<!--Set to true if strings should be bound-->
<!ELEMENT uses-string-binding (#PCDATA)>

<!--Set to true if streams should be used when binding attributes-->
<!ELEMENT uses-streams-for-binding (#PCDATA)>

<!--Set to true if field names should be converted to uppercase when generating
SQL-->
<!ELEMENT should-force-field-names-to-uppercase (#PCDATA)>

<!--Set to true if the session should optimize data conversions-->
<!ELEMENT should-optimize-data-conversion (#PCDATA)>
<!--Set to true if the connection should use native SQL-->
<!ELEMENT uses-native-sql (#PCDATA)>

<!--Set to true if trailing white spaces should be removed from strings-->
<!ELEMENT should-trim-strings (#PCDATA)>

<!--Set to true if the connection should batch the statements-->
<!ELEMENT uses-batch-writing (#PCDATA)>

<!--Set tio true if the connection should use jdbc2.0 batch writing-->
<!ELEMENT uses-jdbc20-batch-writing (#PCDATA)>

<!--Set to true if the connection should use an external connection pool-->
<!ELEMENT uses-external-connection-pool (#PCDATA)>

<!--Set to true if the session will be using an external transaction
controller-->
<!ELEMENT uses-external-transaction-controller (#PCDATA)>

<!--Genereic element used to describe a string that represents the name of an
item-->
<!ELEMENT name (#PCDATA)>

<!--This element used if a non-jts connection is required (usually only required
in an Application server when CacheSync is used-->
<!ELEMENT non-jts-connection-url (#PCDATA)>

DTD listing

The toplink-ejb-jar DTD B-7

<!--This element used if a non-jts connection is required (usually only required
in an Application server when CacheSync is used-->
<!ELEMENT non-jts-datasource (#PCDATA)>

DTD listing

B-8 Oracle 9iAS TopLink CMP for Users of IBM WebSphere Server Guide

Index-1

Index
A
aggregate collection mappings, 2-6
aggregate object mappings, 2-5
amendment methods, 5-2, 7-1

static, 7-4
TopLink descriptors, customizing, 7-4

application server, running with TopLink, 3-6
attributes

described, 1-4
in Java objects, 1-4

B
bean instance, defined, 1-4
bi-directional relationships

maintaining, one-to-many relationships, 6-3
bidirectional relationships

maintaining, overview, 6-3

C
CALL finders, using, 5-4
class, persistent, 1-4
CLASSPATH

modifying, 3-4
setting in a non-Windows environment, 3-4
setting in a Windows environment, 3-3

CMP see "container-managed persistence"
container-managed persistence

concepts, 1-3
customization, 7-1
example application, 8-1

creating in Java
mappings, 7-2
TopLink descriptors, 7-2

customization
DatabaseLogin, 7-5
descriptors and mappings, 7-1
in container-managed persistence, 7-1
ServerSession, 7-5
TopLink descriptors using amendment

methods, 7-4
customizing

descriptors using amendment methods, 7-4

D
DatabaseLogin described, 7-5
defining finders, 5-1
defining queries, 5-1
dependent Java objects, A-6
dependent lightweight objects

dependent Java objects, A-6
dependent objects, managing under EJB 1.1, 6-4
Deploy Tool

using with WebSphere Studio Application
Developer, 4-6

deployment
preparing for, 4-3

deployment descriptors
customizing using amendment methods, 7-4
described, 1-3

deployment tool
running in Visual Age for Java, 4-4

deployment, entity beans, 4-1

Index-2

descriptors (TopLink)
creating in Java, 7-2
customizing with amendment methods, 7-4

direct mappings
described, 2-2
with entity beans, 2-2

E
EJB container, described, 1-3
EJB Entity bean deployment

described, 4-1
overview, 4-1

EJB Primary Key, defined, 1-5
EJB server, described, 1-3
EJB specification

indirection, 2-8
inheritance, 2-7
mapping, 2-1
sequencing, 2-6

EJBHome, defined, 1-5
EJBObject, defined, 1-4
EJBQL finders, using, 5-6
Enterprise JavaBeans

architectures summary, A-1
container, 1-3
deployment descriptors, 1-3
described, 1-3
Entity beans, 1-4
remote entities, A-2
remote session beans, A-3
server, 1-3
Session Beans, 1-3

Entity bean deployment
described, 4-1
overview, 4-1

entity beans
bean instance, 1-4
defined, 1-4
deployment, 4-1
described, 1-4
EJB Home, 1-5
EJB Object, 1-4
EJB Primary Key, 1-5
inheritance, 2-7
mapping using Mapping Workbench, 2-1
mapping, overview, 2-1
mappings, 2-3
persistent state, 1-4
sequencing with, 2-6
with TopLink Mapping Workbench, 2-1

examples
expression framework, 5-4
named finders, 5-2, 5-4
READALL finders, 5-5, 5-6, 5-7, 5-8

executing finders, 5-1
executing queries, 5-1
EXPRESSION finders, using, 5-5
expression framework, 5-4

defining named queries, 5-2

F
Finder Libraries, using, 5-1
finder results, disabling caching, 5-9
finders

advanced options, 5-8
caching options, 5-8
defining and executing, 5-1
disabling caching of returned results, 5-9

G
generic NAMED finder, using, 5-4

H
home interface, inheritance, 2-7

Index-3

I
indirection

described, 2-8
EJBs, entity beans, 2-8

inheritance
described, 2-7
EJBs, entity beans, 2-7
home interface, 2-7

installation
testing, 3-4

J
Java objects

serializing between client and server under EJB
1.1, 6-4

Java objects, described, 1-4

L
login, Database, 7-5

M
many-to-many mappings, 2-5
mappings

aggregate collection, 2-6
aggregate object, 2-5
between entity beans, 2-3
between entity beans and Java objects, 2-3
creating, 2-2
creating in Java, 7-2
described, 2-1
direct, 2-2
many-to-many, 2-5
one-to-many, 2-4
one-to-one, 2-4
relationship, 2-3

methods
described, 1-4
in Java objects, 1-4

N
named finders

using, 5-1
using generic, 5-4

named queries
defining, overview, 5-2

native sequencing, 2-6
non-Windows environment

setting CLASSPATH, 3-4
setting PATH, 3-4

O
one-to-many mappings, described, 2-4
one-to-one mapping, described, 2-4

P
PATH

modifying, 3-4
setting in a non-Windows environment, 3-4
setting in a Windows environment, 3-3

persistent classes in Java objects, 1-4
persistent state, 1-4

Q
queries

defining and executing, 5-1
queries, named

defining, 5-2
defining under EJB QL, 5-2
defining under SQL, 5-2
defining under TopLink expression

framework, 5-2

R
READALL finders, 5-7
relationship mappings

described, 2-3
with entity beans, 2-3

relationships, described, 1-4
remote entities, A-2
remote session beans, A-3

Index-4

run-time issues
described, 6-1
maintaining bi-directional relationships, 6-3
transaction support, 6-1

S
sequencing

adding outside of Mapping Workbench, 2-7
native, 2-6
with entity beans, 2-6

session and entity beans, combining, A-5
session beans

remote, A-3
session beans, described, 1-3
session described, 7-5
session façade, A-5
session listener class

described, 7-6
stateful, stateless Session Beans, 1-3
static amendment methods, 7-4

T
testing the TopLink CMP installation, 3-4
TopLink

installing in a Windows environment, 3-3
TopLink CMP

overview, 1-1
testing with entity beans, 3-6

TopLink deployment tool, testing, 3-5
TopLink descriptors

creating in Java, 7-2
customizing with amendment methods, 7-4

TopLink expression framework
defining named queries, 5-2

TopLink expression framework, using, 5-3
TopLink for Java, overview, 1-2
TopLink installation, testing, 3-4
TopLink Mapping Workbench

overview, 1-2
using with entity beans, 2-1

toplink-ejb-jar.xml
Data Type description (dtd), B-1

transaction support
valid transactional states, 6-2
when updates occur, 6-2

W
WebSphere Studio Application Developer,

deploying to using the Deploy Tool, 4-6
Windows environment

setting CLASSPATH, 3-3
setting PATH, 3-3

	Oracle9iAS Toplink CMP for Users of IBM WebSphere Server Guide
	Contents
	Send Us Your Comments
	Preface
	1 Introduction
	TopLink Container-Managed Persistence
	TopLink for Java
	TopLink Mapping�Workbench
	Understanding container-managed persistence
	Enterprise JavaBeans (EJBs)
	Terminology and definitions

	Java objects and Entity Beans

	2 Mapping Entity Beans
	Using TopLink Mapping Workbench
	Mappings
	Creating mappings
	Direct mappings
	Relationship mappings
	Mappings between entity beans
	Mappings between entity beans and Java objects
	One-to-one mappings
	One-to-many mappings
	Many-to-many mappings
	Aggregate object mappings
	Aggregate collection mappings

	Sequencing with Entity Beans
	Adding sequencing outside of the TopLink Mapping Workbench

	Inheritance
	Indirection

	3 Configuring TopLink Container-Managed Persistence
	Software requirements
	Configuring TopLink CMP
	Testing your TopLink installation
	Testing TopLink deployment tool
	Testing TopLink Container-Managed Persistence with entity beans
	Running the Server with TopLink

	4 EJB Entity Bean Deployment
	Overview of deployment
	Understanding Deployment
	Requirements before deployment
	Assemble the entity beans into a .jar or .ear file

	Configuring entity bean deployment descriptors
	Preparing for deployment
	Running the Deployment Tool
	Running the command line Deployment Tool
	Running the graphic Deployment tool
	Using Deploy Tool with WebSphere Studio Application Developer (WSAD)

	Deploying a TopLink-Deployed EJB JAR
	Starting the entity bean
	Running an EJB Client

	5 Defining and Executing Queries
	Using Finder Libraries
	NAMED finders
	Creating NAMED finders
	Defining “named” TopLink queries
	Using the TopLink expression framework
	Using the generic NAMED finder

	CALL finders
	Creating CALL finders
	Executing a CALL finder

	EXPRESSION finders
	Creating EXPRESSION finders
	Executing an EXPRESSION finder

	EJBQL finders
	Creating an EJBQL finder

	READALL finders
	Creating READALL finders
	Executing a READALL finder

	Advanced finder options
	Caching options
	Disabling caching of returned finder results
	Refreshing finder results

	6 Run time considerations
	Transaction support
	TopLink within the IBM WebSphere Server
	When updates occur
	Valid transactional states

	Maintaining bidirectional relationships
	One-to-Many relationship

	Managing dependent objects
	Serializing Java objects between client and server

	Managing collections of EJBObjects

	7 Customization
	Customizing TopLink descriptors and mappings
	Creating projects and TopLink descriptors in Java
	Customizing TopLink descriptors with amendment methods

	Working with TopLink ServerSession and Login
	Understanding ServerSession
	Understanding DatabaseLogin
	Customizing ServerSession and DatabaseLogin
	Additional configuration changes

	8 The Single Bean Example Application
	Understanding the Single Bean example
	The Object model
	The interface
	The class
	The home interface

	Database schema

	Entity Development
	Create the interfaces
	Create and implement the bean classes
	Create the deployment descriptors
	The TopLink deployment descriptor: toplink�ejb�jar.xml

	Map the entities to the database
	Creating a TopLink project

	Generate code for deployment
	Deploy the EAR file
	Run the client

	A EJB Architectures Summary
	Introduction to EJB architectures
	Remote Entities
	Remote Session beans
	Session Façade - Combining Session and Entity beans

	Dependent Java Objects
	Conclusion

	B The toplink-ejb-jar DTD
	DTD listing

	Index

