
Oracle® WebLogic Server
Using Web Server Plug-Ins with WebLogic Server

10g Release 3 (10.3)

July 2008

Oracle WebLogic Server Using Web Server Plug-Ins with WebLogic Server, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Using Web Server Plug-Ins With WebLogic Server iii

Introduction and Roadmap
Document Scope and Audience. 1-1

Guide to this Document . 1-1

Related Documentation . 1-2

New and Changed Features in This Release . 1-2

Understanding Using Web Server Plug-Ins With WebLogic
Server

What Are Plug-Ins? . 2-1

Plug-Ins Included with WebLogic Server . 2-1

Installing and Configuring the Apache HTTP Server Plug-In
Overview of the Apache HTTP Server Plug-In. 3-1

Keep-Alive Connections in Apache Version 2.0 . 3-2

Proxying Requests . 3-2

Apache 2.2 . 3-2

Certifications . 3-3

Installing the Apache HTTP Server Plug-In . 3-3

Installing the Apache HTTP Server Plug-In as a Dynamic Shared Object 3-3

Support for Large Files in Apache 2.0 . 3-6

Configuring the Apache HTTP Server Plug-In . 3-7

Editing the httpd.conf File . 3-7

Including a weblogic.conf File in the httpd.conf File . 3-9

Creating weblogic.conf Files. 3-9

Sample weblogic.conf Configuration Files . 3-11

Template for the Apache HTTP Server httpd.conf File 3-14

Setting Up Perimeter Authentication. 3-14

Using SSL with the Apache Plug-In . 3-16

iv Using Web Server Plug-Ins With WebLogic Server

Configuring SSL Between the Apache HTTP Server Plug-In and WebLogic Server3-16

Issues with SSL-Apache Configuration. 3-16

Connection Errors and Clustering Failover. 3-17

Possible Causes of Connection Failures . 3-18

Tuning to Reduce Connection_Refused Errors . 3-18

Failover with a Single, Non-Clustered WebLogic Server . 3-19

The Dynamic Server List . 3-19

Failover, Cookies, and HTTP Sessions . 3-20

Installing and Configuring the Microsoft IIS Plug-In
Overview of the Microsoft Internet Information Server Plug-In 4-1

Connection Pooling and Keep-Alive . 4-2

Proxying Requests . 4-2

Certifications . 4-3

Installing and Configuring the Microsoft Internet Information Server Plug-In 4-3

Proxying Requests from Multiple Virtual Websites to WebLogic Server 4-9

Sample iisproxy.ini File . 4-10

Creating ACLs Through IIS . 4-11

Setting Up Perimeter Authentication . 4-11

Using SSL with the Microsoft Internet Information Server Plug-In. 4-13

Proxying Servlets from IIS to WebLogic Server . 4-13

Testing the Installation . 4-14

Connection Errors and Clustering Failover. 4-15

Possible Causes of Connection Failures . 4-15

Failover with a Single, Non-Clustered WebLogic Server . 4-15

The Dynamic Server List . 4-15

Failover, Cookies, and HTTP Sessions . 4-16

Using Web Server Plug-Ins With WebLogic Server v

Proxying Requests to Another Web Server
Overview of Proxying Requests to Another Web Server . 6-1

Setting Up a Proxy to a Secondary Web Server . 6-1

Sample Deployment Descriptor for the Proxy Servlet . 6-3

Parameters for Web Server Plug-Ins
Entering Parameters in Web Server Plug-In Configuration Files 7-1

General Parameters for Web Server Plug-Ins . 7-2

SSL Parameters for Web Server Plug-Ins . 7-14

vi Using Web Server Plug-Ins With WebLogic Server

Using WebLogic Server with Plug-ins 1-1

C H A P T E R 1

Introduction and Roadmap

This section describes the contents and organization of this guide—Using Web Server Plug-Ins
with WebLogic Server.

“Document Scope and Audience” on page 1-1

“Guide to this Document” on page 1-1

“Related Documentation” on page 1-2

“New and Changed Features in This Release” on page 1-2

Document Scope and Audience
This document explains use of plug-ins provided for proxying requests to third party
administration servers. This document is intended mainly for system administrators who manage
the WebLogic Server® application platform and its various subsystems.

Guide to this Document
This chapter, “Introduction and Roadmap,” introduces the organization of this guide.

Chapter 2, “Understanding Using Web Server Plug-Ins With WebLogic Server,” describes
the plug-ins available for use with WebLogic Server.

Chapter 3, “Installing and Configuring the Apache HTTP Server Plug-In,” explains how to
install and configure the WebLogic Server Apache plug-in.

I n t roduct i on and Roadmap

1-2 Using WebLogic Server with Plug-ins

Chapter 4, “Installing and Configuring the Microsoft IIS Plug-In,” explains how to install
and configure the WebLogic Server plug-in for the Microsoft Internet Information Server.

Chapter 5, “Proxying Requests to Another Web Server,” describes the use of WebLogic
Server as a proxy, forwarding HTTP requests to other Web servers.

Chapter 6, “Parameters for Web Server Plug-Ins,” discusses the parameters for Web server
plug-ins.

Related Documentation
This document contains information on using Web server plug-ins.

For information on using a proxy plug-sin, see the following document:

Using Clusters for information on load balancing servlets and JSPs using a proxy plug-in.

New and Changed Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this release, see
“What’s New in WebLogic Server” in Release Notes.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/cluster/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/notes/new.html

Using Web Server Plug-Ins With WebLogic Server 2-1

C H A P T E R 2

Understanding Using Web Server
Plug-Ins With WebLogic Server

The following sections describe the plug-ins provided by Oracle for use with WebLogic Server:

“What Are Plug-Ins?” on page 2-1

“Plug-Ins Included with WebLogic Server” on page 2-1

What Are Plug-Ins?
Plug-ins are small software programs that developers use to extend a WebLogic Server
implementation. Plug-ins enable WebLogic Server to communicate with applications deployed
on Apache HTTP Server or Microsoft’s Internet Information Server. Typically, WebLogic Server
handles the application requests that require dynamic functionality, the requests that can best be
served with dynamic HTML pages or JSPs (Java Server Pages).

WebLogic Server Plug-Ins do not support two-way SSL. However, the Plug-Ins can be set up to
require the client certificate and pass it on to WebLogic Server. For example:

apache ssl

SSLVerifyClient require

SSLVerifyDepth 10

SSLOptions +FakeBasicAuth +ExportCertData +CompatEnvVars +StrictRequire

Plug-Ins Included with WebLogic Server
WebLogic Server includes plug-ins for the following Web servers:

Unders tanding Us ing Web Se rver P lug- Ins Wi th WebLogic Se rver

2-2 Using WebLogic Server with Plug-insr

Apache HTTP Server

Microsoft Internet Information Server

Using Web Server Plug-Ins With WebLogic Server 3-1

C H A P T E R 3

Installing and Configuring the Apache
HTTP Server Plug-In

The following sections describe how to install and configure the Apache HTTP Server Plug-In:

“Overview of the Apache HTTP Server Plug-In” on page 3-1

“Installing the Apache HTTP Server Plug-In” on page 3-3

“Configuring the Apache HTTP Server Plug-In” on page 3-7

“Setting Up Perimeter Authentication” on page 3-14

“Using SSL with the Apache Plug-In” on page 3-16

“Connection Errors and Clustering Failover” on page 3-17

Overview of the Apache HTTP Server Plug-In
The Apache HTTP Server Plug-In allows requests to be proxied from an Apache HTTP Server
to WebLogic Server. The plug-in enhances an Apache installation by allowing WebLogic Server
to handle requests that require the dynamic functionality of WebLogic Server.

The plug-in is intended for use in an environment where an Apache Server serves static pages,
and another part of the document tree (dynamic pages best generated by HTTP Servlets or
JavaServer Pages) is delegated to WebLogic Server, which may be operating in a different
process, possibly on a different host. To the end user—the browser—the HTTP requests
delegated to WebLogic Server still appear to be coming from the same source.

Ins ta l l i ng and Conf igur ing the Apache HTTP Se rve r P lug- In

3-2 Using Web Server Plug-Ins With WebLogic Server

HTTP-tunneling, a technique which allows HTTP requests and responses access through a
company’s firewall, can also operate through the plug-in, providing non-browser clients access
to WebLogic Server services.

The Apache HTTP Server Plug-In operates as an Apache module within an Apache HTTP
Server. An Apache module is loaded by Apache Server at startup, and then certain HTTP requests
are delegated to it. Apache modules are similar to HTTP servlets, except that an Apache module
is written in code native to the platform.

For information on configurations on which the Apache HTTP Server Plug-In is supported, see
http://edocs.bea.com/platform/suppconfigs/configs103/103_over/add-ons.html.

Note: Apache 2.0 Plug-In was deprecated in the WebLogic Server 10.0 release.

Keep-Alive Connections in Apache Version 2.0
Version 2.0 of the Apache HTTP Server Plug-In improves performance by using a reusable pool
of connections from the plug-in to WebLogic Server. The plug-in implements HTTP 1.1
keep-alive connections between the plug-in and WebLogic Server by reusing the same
connection in the pool for subsequent requests from the same client. If the connection is inactive
for more than 30 seconds, (or a user-defined amount of time) the connection is closed and
returned to the pool. You can disable this feature if desired. For more information, see
“KeepAliveEnabled”.

Proxying Requests
The plug-in proxies requests to WebLogic Server based on a configuration that you specify. You
can proxy requests based on the URL of the request (or a portion of the URL). This is called
proxying by path. You can also proxy requests based on the MIME type of the requested file. Or
you can use a combination of the two methods. If a request matches both criteria, the request is
proxied by path. You can also specify additional parameters for each type of request that define
additional behavior of the plug-in. For more information, see “Configuring the Apache HTTP
Server Plug-In” on page 3-7.

Apache 2.2
Although this document refers to Apache 2.0, you can apply the same instructions to use Apache
2.2 with the libraries shown in Table 3-2.

http://edocs.bea.com/platform/suppconfigs/configs103/103_over/add-ons.html

Ins ta l l ing the Apache HTTP Se rve r P lug- In

Using Web Server Plug-Ins With WebLogic Server 3-3

Certifications
The Apache HTTP Server Plug-In is supported on AIX, Linux, Solaris, Windows, and HPUX11
platforms. For information on support for specific versions of Apache, see
http://edocs.bea.com/platform/suppconfigs/configs103/103_over/add-ons.html.

Installing the Apache HTTP Server Plug-In
You can install the Apache HTTP Server Plug-In as an Apache module in your Apache HTTP
Server installation and link it as a Dynamic Shared Object (DSO).

A DSO is compiled as a library that is dynamically loaded by the server at run time, and can be
installed without recompiling Apache.

Installing the Apache HTTP Server Plug-In as a Dynamic
Shared Object
The Apache plug-in is distributed as a shared object (.so) for Solaris, Linux, AIX, Windows, and
HPUX11 platforms. The WLS 10.3 installation does not include the Apache HTTP server
plug-ins. The Apache HTTP Server plug-ins are available in a separate zip file, available from
the Oracle download and support sites. These plug-ins contain a fix for the security advisory
described at:

http://www.oracle.com/technology/deploy/security/alerts/alert_cve2008-3257.html

After downloading the zip file, extract the zip to a directory of your choice on disk.

Table 3-1 shows the directories created after extracting the zip file to the directory you specified.
These directories contain shared object files for various platforms.

Table 3-2 identifies the WebLogic Server Apache Plug-In modules for different versions of
Apache HTTP Server and different encryption strengths.

http://edocs.bea.com/platform/suppconfigs/configs103/103_over/add-ons.html
http://www.oracle.com/technology/deploy/security/alerts/alert_cve2008-3257.html

Ins ta l l i ng and Conf igur ing the Apache HTTP Se rve r P lug- In

3-4 Using Web Server Plug-Ins With WebLogic Server

Table 3-1 Locations of Plug-In Shared Object Files

Operating System Shared Object Location

AIX aix/ppc

Solaris solaris/sparc

solaris/sparc/largefile1

solaris/x86

solaris/x86/largefile1

1. See “Support for Large Files in Apache 2.0” on page 3-6.

Linux linux/i686

linux/i686/largefile1

linux/ia64

linux/x86_64

Windows (Apache 2.0 and 2.2,
32-bit)

win\32

HPUX11 hpux11/IPF64

hpux11/PA_RISC

Note: If you are running Apache 2.0.x server on HP-UX11, set the
environment variables specified immediately below before
you build the Apache server. Because of a problem with the
order in which linked libraries are loaded on HP-UX, a core
dump can result if the load order is not preset as an
environment variable before building. Set the following
environment variables before proceeding with the Apache
configure, make, and make install steps, (described
in Apache HTTP Server documentation at
http://httpd.apache.org/docs-2.1/install.html#configure):

export EXTRA_LDFLAGS="-lstd -lstream -lCsup
-lm -lcl -ldld -lpthread"

http://httpd.apache.org/docs-2.1/install.html#configure

Ins ta l l ing the Apache HTTP Se rve r P lug- In

Using Web Server Plug-Ins With WebLogic Server 3-5

Choose the appropriate version of the plug-in shared object from the following table:

To install the Apache HTTP Server Plug-In as a dynamic shared object:

1. In the location where you unzipped the downloaded plug-in file, locate the shared object
directory for your platform using Table 3-1.

Note: Before making your selection, please review “Support for Large Files in Apache 2.0”
on page 3-6.

2. Identify the plug-in shared object file for your version of Apache in Table 3-2.

3. Verify that the WebLogic Server Apache HTTP Server Plug-In mod_so.c module is enabled.

The Apache HTTP Server Plug-In will be installed in your Apache HTTP Server
installation as a Dynamic Shared Object (DSO). DSO support in Apache is based on
module mod_so.c, which must be enabled before mod_wl_20.so is loaded. If you
installed Apache HTTP Server using the script supplied by Apache, mod_so.c is already
enabled. Verify that mod_so.c is enabled by executing the following command:

APACHE_HOME\bin\apachectl -l

(Where APACHE_HOME is the directory containing your Apache HTTP Server installation.)

This command lists all enabled modules. If mod_so.c is not listed, you must rebuild your
Apache HTTP Server, making sure that the following options are configured:

...
--enable-module=so
--enable-rule=SHARED_CORE
...

See Apache 2.0 Shared Object (DSO) Support at http://httpd.apache.org/docs/2.0/dso.html.

4. Install the Apache HTTP Server Plug-In module for Apache 2.0.x by copying the
mod_wl_20.so file to the APACHE_HOME\modules directory and adding the following line to
your APACHE_HOME/conf/httpd.conf file manually:

Table 3-2 Apache Plug-In Shared Object File Versions

Apache Version Regular Strength Encryption 128-bit Encryption

Standard Apache Version
2.0.x

mod_wl_20.so mod_wl128_20.so

Standard Apache Version
2.2.x

mod_wl_22.so mod_wl128_22.so

http://httpd.apache.org/docs/2.0/dso.html

Ins ta l l i ng and Conf igur ing the Apache HTTP Se rve r P lug- In

3-6 Using Web Server Plug-Ins With WebLogic Server

LoadModule weblogic_module modules/mod_wl_20.so

5. Define any additional parameters for the Apache HTTP Server Plug-In.

The Apache HTTP Server Plug-In recognizes the parameters listed in “General Parameters
for Web Server Plug-Ins” on page 6-2. To modify the behavior of your Apache HTTP
Server Plug-In, define these parameters:

– In a Location block, for parameters that apply to proxying by path, or

– In an IfModule block, for parameters that apply to proxying by MIME type.

6. Verify the syntax of the APACHE_HOME\conf\httpd.conf file with the following
command:

APACHE_HOME\bin\apachectl -t

The output of this command reports any errors in your httpd.conf file or returns:

Syntax OK

7. Restart Weblogic Server.

8. Start (or restart if you have changed the configuration) Apache HTTP Server.

9. Test the plug-in by opening a browser and setting the URL to the Apache Server +
“/weblogic/”, which should bring up the default WebLogic Server HTML page, welcome
file, or default servlet, as defined for the default Web Application on WebLogic Server. For
example:

http://myApacheserver.com/weblogic/

Support for Large Files in Apache 2.0
The version of Apache 2.0 that ships with some operating systems, including some versions of
Solaris and Linux, is compiled with the following flags:
-D_LARGEFILE_SOURCE
-D_FILE_OFFSET_BITS=64

These compilation flags enable support for files larger than 2 GB. If you want to use a WebLogic
Server Web server plug-in on such an Apache 2.0 Web server, you must use plug-ins compiled
with the same compilation flags, which are available in the largefile subdirectory for your
operating system. For example:
C:\bea\wlserver_10.3\server\plugin\solaris\sparc\largefile

Conf igu r ing the Apache HTTP Se rve r P lug- In

Using Web Server Plug-Ins With WebLogic Server 3-7

Note: Apache 2.2 does not require special compilation flags to support files larger than 2 GB.
Therefore, you do not need to use a specially compiled Web server plug-in if you are
running Apache 2.2.

Configuring the Apache HTTP Server Plug-In
After installing the plug-in in the Apache HTTP Server, configure the WebLogic Server Apache
Plug-In and configure the server to use the plug-in. This section explains how to edit the Apache
httpd.conf file to instruct the Apache server to load the WebLogic Server library for the plug-in
as an Apache module, and to specify the application requests that should be handled by the
module.

Editing the httpd.conf File
Edit the httpd.conf file in your Apache HTTP server installation to configure the Apache
HTTP Server Plug-In.

This section explains how to locate and edit the httpd.conf file, to configure the server to use
the WebLogic Server Apache Plug-In, to proxy requests by path or by MIME type, to enable
HTTP tunneling, and to use other WebLogic Server plug-in parameters.

1. Open the httpd.conf file.

The file is located at APACHE_HOME\conf\httpd.conf (where APACHE_HOME is the root
directory of your Apache HTTP server installation). See a sample httpd.conf file at
“Setting Up Perimeter Authentication” on page 3-14.

2. Ensure that the WebLogic Server modules are included for Apache 2.0.x, manually add the
following line to the httpd.conf file:

LoadModule weblogic_module modules\mod_wl_20.so

3. Add an IfModule block that defines one of the following:

For a non-clustered WebLogic Server:

The WebLogicHost and WebLogicPort parameters.

For a cluster of WebLogic Servers:

The WebLogicCluster parameter.

For example:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com

Ins ta l l i ng and Conf igur ing the Apache HTTP Se rve r P lug- In

3-8 Using Web Server Plug-Ins With WebLogic Server

WebLogicPort 7001
</IfModule>

4. To proxy requests by MIME type, add a MatchExpression line to the IfModule block. Note
that if both MIME type and proxying by path are enabled, proxying by path takes precedence
over proxying by MIME type.

For example, the following IfModule block for a non-clustered WebLogic Server specifies
that all files with MIME type .jsp are proxied:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001
MatchExpression *.jsp

</IfModule>

You can also use multiple MatchExpressions, for example:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001
MatchExpression *.jsp
MatchExpression *.xyz

</IfModule>

If you are proxying requests by MIME type to a cluster of WebLogic Servers, use the
WebLogicCluster parameter instead of the WebLogicHost and WebLogicPort
parameters. For example:

<IfModule mod_weblogic.c>
WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
MatchExpression *.jsp
MatchExpression *.xyz

</IfModule>

5. To proxy requests by path, use the Location block and the SetHandler statement.
SetHandler specifies the handler for the Apache HTTP Server Plug-In module. For example
the following Location block proxies all requests containing /weblogic in the URL:

<Location /weblogic>
 SetHandler weblogic-handler
PathTrim /weblogic
</Location>

The PathTrim parameter specifies a string trimmed from the beginning of the URL before
the request is passed to the WebLogic Server instance (see “General Parameters for Web
Server Plug-Ins” on page 6-2).

6. Optionally, enable HTTP tunneling for t3 or IIOP.

Conf igu r ing the Apache HTTP Se rve r P lug- In

Using Web Server Plug-Ins With WebLogic Server 3-9

a. To enable HTTP tunneling if you are using the t3 protocol and weblogic.jar, add the
following Location block to the httpd.conf file:

<Location /HTTPClnt>
 SetHandler weblogic-handler
</Location>

b. To enable HTTP tunneling if you are using the IIOP, the only protocol used by the
WebLogic Server thin client, wlclient.jar, add the following Location block to the
httpd.conf file:

<Location /iiop>
 SetHandler weblogic-handler
</Location>

7. Define any additional parameters for the Apache HTTP Server Plug-In.

The Apache HTTP Server Plug-In recognizes the parameters listed in “General Parameters
for Web Server Plug-Ins” on page 6-2. To modify the behavior of your Apache HTTP
Server Plug-In, define these parameters either:

– In a Location block, for parameters that apply to proxying by path, or

– In an IfModule block, for parameters that apply to proxying by MIME type.

Including a weblogic.conf File in the httpd.conf File
If you want to keep several separate configuration files, you can define parameters in a separate
configuration file called weblogic.conf file, by using the Apache Include directive in an
IfModule block in the httpd.conf file:

<IfModule mod_weblogic.c>
 # Config file for WebLogic Server that defines the parameters
 Include conf/weblogic.conf
</IfModule>

The syntax of weblogic.conf files is the same as that for the httpd.conf file.

This section describes how to create weblogic.conf files, and includes sample weblogic.conf
files.

Creating weblogic.conf Files
Be aware of the following when constructing a weblogic.conf file.

Ins ta l l i ng and Conf igur ing the Apache HTTP Se rve r P lug- In

3-10 Using Web Server Plug-Ins With WebLogic Server

If you are using SSL between the Apache HTTP Server Plug-In and WebLogic Server, you
cannot define parameters in a file accessed, as the weblogic.conf file is, via the Apache
Include directive.

Enter each parameter on a new line. Do not put ‘=’ between a parameter and its value. For
example:

PARAM_1 value1
PARAM_2 value2
PARAM_3 value3

If a request matches both a MIME type specified in a MatchExpression in an IfModule
block and a path specified in a Location block, the behavior specified by the Location
block takes precedence.

If you define the CookieName parameter, you must define it in an IfModule block.

If you use an Apache HTTP Server <VirtualHost> block, you must include all
configuration parameters (MatchExpression, for example) for the virtual host within the
<VirtualHost> block (see Apache Virtual Host documentation).

If you want to have only one log file for all the virtual hosts configured in your
environment, you can achieve it using global properties. Instead of specifying the same
Debug, WLLogFile and WLTempDir properties in each virtual host you can specify them
just once in the <IfModule> tag

Sample httpd.conf file:
<IfModule mod_weblogic.c>

 WebLogicCluster johndoe02:8005,johndoe:8006

 Debug ON

 WLLogFile c:/tmp/global_proxy.log

 WLTempDir "c:/myTemp"

 DebugConfigInfo On

 KeepAliveEnabled ON

 KeepAliveSecs 15

</IfModule>

<Location /jurl>

 SetHandler weblogic-handler

http://httpd.apache.org/docs/vhosts/

Conf igu r ing the Apache HTTP Se rve r P lug- In

Using Web Server Plug-Ins With WebLogic Server 3-11

 WebLogicCluster agarwalp01:7001

</Location>

<Location /web>

 SetHandler weblogic-handler

 PathTrim /web

 Debug OFF

 WLLogFile c:/tmp/web_log.log

</Location>

<Location /foo>

 SetHandler weblogic-handler

 PathTrim /foo

 Debug ERR

 WLLogFile c:/tmp/foo_proxy.log

</Location>

All the requests which match /jurl/* will have Debug Level set to ALL and log messages
will be logged to c:/tmp/global_proxy.log file. All the requests which match /web/* will
have Debug Level set to OFF and no log messages will be logged. All the requests which
match /foo/* will have Debug Level set to ERR and log messages will be logged to
c:/tmp/foo_proxy.log file

Oracle recommends that you use the MatchExpression statement instead of the <files>
block.

Sample weblogic.conf Configuration Files
The following examples of weblogic.conf files may be used as templates that you can modify
to suit your environment and server. Lines beginning with # are comments.

Example Using WebLogic Clusters
These parameters are common for all URLs which are

directed to the current module. If you want to override

these parameters for each URL, you can set them again in

Ins ta l l i ng and Conf igur ing the Apache HTTP Se rve r P lug- In

3-12 Using Web Server Plug-Ins With WebLogic Server

the <Location> or <Files> blocks. (Except WebLogicHost,

WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>

WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001

ErrorPage http://myerrorpage.mydomain.com

MatchExpression *.jsp

</IfModule>

##

Example Using Multiple WebLogic Clusters
In this example, the MatchExpression parameter syntax for expressing the filename pattern, the
WebLogic Server host to which HTTP requests should be forwarded, and various other
parameters is as follows:

MatchExpression [filename pattern] [WebLogicHost=host] |
[paramName=value]

The first MatchExpression parameter below specifies the filename pattern *.jsp, and then
names the single WebLogicHost. The paramName=value combinations following the pipe
symbol specify the port at which WebLogic Server is listening for connection requests, and also
activate the Debug option. The second MatchExpression specifies the filename pattern *.http
and identifies the WebLogicCluster hosts and their ports. The paramName=value combination
following the pipe symbol specifies the error page for the cluster.

These parameters are common for all URLs which are

directed to the current module. If you want to override

these parameters for each URL, you can set them again in

the <Location> or <Files> blocks (Except WebLogicHost,

WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>

MatchExpression *.jsp WebLogicHost=myHost|WebLogicPort=7001|Debug=ON

MatchExpression

*.html WebLogicCluster=myHost1:7282,myHost2:7283|ErrorPage=

http://www.xyz.com/error.html

</IfModule>

Example Without WebLogic Clusters
These parameters are common for all URLs which are

directed to the current module. If you want to override

Conf igu r ing the Apache HTTP Se rve r P lug- In

Using Web Server Plug-Ins With WebLogic Server 3-13

these parameters for each URL, you can set them again in

the <Location> or <Files> blocks (Except WebLogicHost,

WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>

WebLogicHost myweblogic.server.com

WebLogicPort 7001

MatchExpression *.jsp

</IfModule>

Example Configuring Multiple Name-Based Virtual Hosts
VirtualHost1 = localhost:80

<VirtualHost 127.0.0.1:80>

DocumentRoot "C:/test/VirtualHost1"

ServerName localhost:80<IfModule mod_weblogic.c>

#... WLS parameter ...

WebLogicCluster localhost:7101,localhost:7201

Example: MatchExpression *.jsp <some additional parameter>

MatchExpression *.jsp PathPrepend=/test2

</IfModule>

</VirtualHost>

VirtualHost2 = 127.0.0.2:80

<VirtualHost 127.0.0.2:80>

DocumentRoot "C:/test/VirtualHost1"

ServerName 127.0.0.2:80

<IfModule mod_weblogic.c>

#... WLS parameter ...

WebLogicCluster localhost:7101,localhost:7201

Example: MatchExpression *.jsp <some additional parameter>

MatchExpression *.jsp PathPrepend=/test2

#... WLS parameter ...

</IfModule>

</VirtualHost><IfModule mod_weblogic.c>

You must define a unique value for 'ServerName'or some Plug-In parameters will not work as
expected.

Ins ta l l i ng and Conf igur ing the Apache HTTP Se rve r P lug- In

3-14 Using Web Server Plug-Ins With WebLogic Server

Template for the Apache HTTP Server httpd.conf File
This section contains a sample httpd.conf file for Apache 2.0. You can use this sample as a
template and modify it to suit your environment and server. Lines beginning with # are
comments.

Note that Apache HTTP Server is not case sensitive.

##

APACHE-HOME/conf/httpd.conf file

##

LoadModule weblogic_module libexec/mod_wl_20.so

<Location /weblogic>

 SetHandler weblogic-handler

 PathTrim /weblogic

 ErrorPage http://myerrorpage1.mydomain.com

</Location>

<Location /servletimages>

 SetHandler weblogic-handler

 PathTrim /something

 ErrorPage http://myerrorpage1.mydomain.com

</Location>

<IfModule mod_weblogic.c>

MatchExpression *.jsp

WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001

ErrorPage http://myerrorpage.mydomain.com

</IfModule>

Setting Up Perimeter Authentication
Use perimeter authentication to secure WebLogic Server applications that are accessed via the
Apache Plug-In.

A WebLogic Identity Assertion Provider authenticates tokens from outside systems that access
your WebLogic Server application, including users who access your WebLogic Server
application through the Apache HTTP Server Plug-In. Create an Identity Assertion Provider that
will safely secure your Plug-In as follows:

Se t t ing Up Pe r imete r Au thent i cat i on

Using Web Server Plug-Ins With WebLogic Server 3-15

1. Create a custom Identity Assertion Provider on your WebLogic Server application. See How
to Develop a Custom Identity Assertion Provider in Developing Security Providers for
WebLogic Server.

2. Configure the custom Identity Assertion Provider to support the Cert token type and make
Cert the active token type. See How to Create New Token Types in Developing Security
Providers for WebLogic Server.

3. Set clientCertProxy to True in the web.xml deployment descriptor file for the Web
application (or, if using a cluster, optionally set the Client Cert Proxy Enabled attribute
to true for the whole cluster on the Administration Console
Cluster-->Configuration-->General tab). The clientCertProxy attribute can be used with a
third party proxy server, such as a load balancer or an SSL accelerator, to enable 2-way SSL
authentication. For more information about the clientCertProxy attribute, see
context-param in Developing Web Applications, Servlets and JSPs for WebLogic Server.

4. Once you have set clientCertProxy, be sure to use a connection filter to ensure that
WebLogic Server accepts connections only from the machine on which the Apache Plug-In
is running. See Using Network Connection Filters in Programming WebLogic Security.

5. Web server plug-ins require a trusted Certificate Authority file in order to use SSL between
the plug-in and WebLogic Server. Use Sun Microsystems' keytool utility to export a trusted
Certificate Authority file from the DemoTrust.jks keystore file that resides in
BEA_HOME/wlserver_10.3/server/lib.

a. To extract the wlsdemoca file, for example, use the command:
keytool -export -file trustedcafile.der -keystore DemoTrust.jks -alias
wlsdemoca

Change the alias name to obtain a different trusted CA file from the keystore.

To look at all of the keystore's trusted CA files, use:
keytool -list -keystore DemoTrust.jks

Press enter if prompted for password.

b. To convert the Certificate Authority file to pem format: java utils.der2pem
trustedcafile.der

See Identity Assertion Providers in Developing Security Providers for WebLogic Server.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/dvspisec/ia.html#ia400
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/dvspisec/ia.html#ia400
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/dvspisec/ia.html#ia121
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webapp/weblogic_xml.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/security/con_filtr.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/dvspisec/ia.html

Ins ta l l i ng and Conf igur ing the Apache HTTP Se rve r P lug- In

3-16 Using Web Server Plug-Ins With WebLogic Server

Using SSL with the Apache Plug-In
You can use the Secure Sockets Layer (SSL) protocol to protect the connection between the
Apache HTTP Server Plug-In and WebLogic Server. The SSL protocol provides confidentiality
and integrity to the data passed between the Apache HTTP Server Plug-In and WebLogic Server.

The Apache HTTP Server Plug-In does not use the transport protocol (http or https) specified
in the HTTP request (usually by the browser) to determine whether or not the SSL protocol is
used to protect the connection between the Apache HTTP Server Plug-In and WebLogic Server.

Although two-way SSL can be used between the HTTP client and Apache HTTP server, note that
one-way SSL is used between Apache HTTP Server and WebLogic Server.

Configuring SSL Between the Apache HTTP Server Plug-In
and WebLogic Server
To use the SSL protocol between Apache HTTP Server Plug-In and WebLogic Server:

1. Configure WebLogic Server for SSL. For more information, see Configuring SSL.

2. Configure the WebLogic Server SSL listen port. For more information, see Configuring SSL.

3. In the Apache Server, set the WebLogicPort parameter in the httpd.conf file to the
WebLogic Server SSL listen port configured in Step 2.

4. In the Apache Server, set the SecureProxy parameter in the httpd.conf file to ON.

5. Set any additional parameters in the httpd.conf file that define information about the SSL
connection. For a complete list of the SSL parameters that you can configure for the plug-in,
see “SSL Parameters for Web Server Plug-Ins” on page 6-14.

Issues with SSL-Apache Configuration
These known issues arise when you configure the Apache plug-in to use SSL:

To prepare the plugin configuration, double click the lock and go to the certificates path:

– Select the root CA (at the top).

– Display it.

– Detail and then copy this certificate to a file using the Coded "Base 64 X509" option.

– Save the file, for example, to "MyWeblogicCAToTrust.cer" (which is also a PEM
file).

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html

Connect ion E r ro rs and C luste r ing Fa i l ove r

Using Web Server Plug-Ins With WebLogic Server 3-17

The PathTrim parameter (see “General Parameters for Web Server Plug-Ins” on page 6-2)
must be configured inside the <Location> tag.

The following configuration is incorrect:

<Location /weblogic>
 SetHandler weblogic-handler
</Location>

<IfModule mod_weblogic.c>
 WebLogicHost localhost
 WebLogicPort 7001
 PathTrim /weblogic
</IfModule>

The following configuration is the correct setup:

<Location /weblogic>
 SetHandler weblogic-handler
 PathTrim /weblogic
</Location>

The Include directive does not work with Apache SSL. You must configure all
parameters directly in the httpd.conf file. Do not use the following configuration when
using SSL:

<IfModule mod_weblogic.c>
 MatchExpression *.jsp
 Include weblogic.conf
</IfModule>

The current implementation of the WebLogic Server Apache Plug-In does not support the
use of multiple certificate files with Apache SSL.

Connection Errors and Clustering Failover
When the Apache HTTP Server Plug-In attempts to connect to WebLogic Server, the plug-in uses
several configuration parameters to determine how long to wait for connections to the WebLogic
Server host and, after a connection is established, how long the plug-in waits for a response. If
the plug-in cannot connect or does not receive a response, the plug-in attempts to connect and
send the request to other WebLogic Server instances in the cluster. If the connection fails or there
is no response from any WebLogic Server in the cluster, an error message is sent.

Figure 3-1 “Connection Failover” on page 3-21 demonstrates how the plug-in handles failover.

Ins ta l l i ng and Conf igur ing the Apache HTTP Se rve r P lug- In

3-18 Using Web Server Plug-Ins With WebLogic Server

Possible Causes of Connection Failures
Failure of the WebLogic Server host to respond to a connection request could indicate the
following problems:

Physical problems with the host machine

Network problems

Other server failures

Failure of all WebLogic Server instances to respond could indicate the following problems:

WebLogic Server is not running or is unavailable

A hung server

A database problem

An application-specific failure

Tuning to Reduce Connection_Refused Errors
Under load, an Apache plug-in may receive CONNECTION_REFUSED errors from a back-end
WebLogic Server instance. Follow these tuning tips to reduce CONNECTION_REFUSED
errors:

Increase the AcceptBackLog setting in the configuration of your WebLogic Server
domain.

On Apache 2.0.x, set the KeepAlive directive in the httpd.conf file to On. For example:

KeepAlive: Whether or not to allow persistent connections (more than

one request per connection). Set to "Off" to deactivate.

#

KeepAlive On

See Apache HTTP Server 2.0 documentation at http://httpd.apache.org/docs-project/.

Decrease the time wait interval. This setting varies according to the operating system you
are using. For example:

– On Windows NT, set the TcpTimedWaitDelay on the proxy and WebLogic Server
servers to a lower value. Set the TIME_WAIT interval in Windows NT by editing the
registry key under HKEY_LOCAL_MACHINE:

http://httpd.apache.org/docs-project/

Connect ion E r ro rs and C luste r ing Fa i l ove r

Using Web Server Plug-Ins With WebLogic Server 3-19

SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay

If this key does not exist you can create it as a DWORD value. The numeric value is
the number of seconds to wait and may be set to any value between 30 and 240. If not
set, Windows NT defaults to 240 seconds for TIME_WAIT.

– On Windows 2000, lower the value of the TcpTimedWaitDelay by editing the registry
key under HKEY_LOCAL_MACHINE:

SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

– On Solaris, reduce the setting tcp_time_wait_interval to one second (for both the
WebLogic Server machine and the Apache machine, if possible):

$ndd /dev/tcp

 param name to set - tcp_time_wait_interval

 value=1000

Increase the open file descriptor limit on your machine. This limit varies by operating
system. Using the limit (.csh) or ulimit (.sh) directives, you can make a script to
increase the limit. For example:

#!/bin/sh

ulimit -S -n 100

exec httpd

On Solaris, increase the values of the following tunables on the WebLogic Server machine:

– tcp_conn_req_max_q

– tcp_conn_req_max_q0

Failover with a Single, Non-Clustered WebLogic Server
If you are running only a single WebLogic Server instance the plug-in only attempts to connect
to the server defined with the WebLogicHost parameter. If the attempt fails, an HTTP 503 error
message is returned. The plug-in continues trying to connect to that same WebLogic Server
instance until ConnectTimeoutSecs is exceeded.

The Dynamic Server List
When you use the WebLogicCluster parameter in your httpd.conf or weblogic.conf file to
specify a list of WebLogic Servers, the plug-in uses that list as a starting point for load balancing
among the members of the cluster. After the first request is routed to one of these servers, a

Ins ta l l i ng and Conf igur ing the Apache HTTP Se rve r P lug- In

3-20 Using Web Server Plug-Ins With WebLogic Server

dynamic server list is returned containing an updated list of servers in the cluster. The updated
list adds any new servers in the cluster and deletes any that are no longer part of the cluster or that
have failed to respond to requests. This list is updated automatically with the HTTP response
when a change in the cluster occurs.

Failover, Cookies, and HTTP Sessions
When a request contains session information stored in a cookie or in the POST data, or encoded
in a URL, the session ID contains a reference to the specific server instance in which the session
was originally established (called the primary server) and a reference to an additional server
where the original session is replicated (called the secondary server). A request containing a
cookie attempts to connect to the primary server. If that attempt fails, the request is routed to the
secondary server. If both the primary and secondary servers fail, the session is lost and the plug-in
attempts to make a fresh connection to another server in the dynamic cluster list. See Figure 3-1
“Connection Failover” on page 3-21.

Note: If the POST data is larger than 64K, the plug-in will not parse the POST data to obtain
the session ID. Therefore, if you store the session ID in the POST data, the plug-in cannot
route the request to the correct primary or secondary server, resulting in possible loss of
session data.

Connect ion E r ro rs and C luste r ing Fa i l ove r

Using Web Server Plug-Ins With WebLogic Server 3-21

Figure 3-1 Connection Failover

In the preceding figure, the Maximum number of retries allowed in the red loop is equal to
ConnectTimeoutSecs ÷ ConnectRetrySecs.

Ins ta l l i ng and Conf igur ing the Apache HTTP Se rve r P lug- In

3-22 Using Web Server Plug-Ins With WebLogic Server

Using Web Server Plug-Ins With WebLogic Server 4-1

C H A P T E R 4

Installing and Configuring the
Microsoft IIS Plug-In

The following sections describe how to install and configure the Microsoft Internet Information
Server Plug-In.

“Overview of the Microsoft Internet Information Server Plug-In” on page 4-1

“Certifications” on page 4-3

“Installing and Configuring the Microsoft Internet Information Server Plug-In” on page 4-3

“Proxying Requests from Multiple Virtual Websites to WebLogic Server” on page 4-9

“Creating ACLs Through IIS” on page 4-11

“Setting Up Perimeter Authentication” on page 4-11

“Using SSL with the Microsoft Internet Information Server Plug-In” on page 4-13

“Proxying Servlets from IIS to WebLogic Server” on page 4-13

“Testing the Installation” on page 4-14

“Connection Errors and Clustering Failover” on page 4-15

Overview of the Microsoft Internet Information Server
Plug-In

The Microsoft Internet Information Server Plug-In allows requests to be proxied from a
Microsoft Internet Information Server (IIS) to WebLogic Server. The plug-in enhances an IIS

Ins ta l l i ng and Conf igur ing the M ic roso f t I IS P lug- In

4-2 Using Web Server Plug-Ins With WebLogic Server

installation by allowing WebLogic Server to handle those requests that require the dynamic
functionality of WebLogic Server.

You use the Microsoft Internet Information Server Plug-In in an environment where the Internet
Information Server (IIS) serves static pages such as HTML pages, while dynamic pages such as
HTTP Servlets or JavaServer Pages are served by WebLogic Server. WebLogic Server may be
operating in a different process, possibly on a different host. To the end user—the browser—the
HTTP requests delegated to WebLogic Server still appear to be coming from IIS. The
HTTP-tunneling facility of the WebLogic client-server protocol also operates through the
plug-in, providing access to all WebLogic Server services.

Connection Pooling and Keep-Alive
The Microsoft Internet Information Server Plug-In improves performance using a pool of
connections from the plug-in to WebLogic Server. The plug-in implements HTTP 1.1 keep-alive
connections between the plug-in and WebLogic Server by re-using the same connection for
subsequent requests from the same client. If the connection is inactive for more than 30 seconds,
(or a user-defined amount of time) the connection is closed. The connection with the client can
be reused to connect to the same client at a later time if it has not timed out. You can disable this
feature if desired. For more information, see “KeepAliveEnabled” on page 6-12.

Proxying Requests
The plug-in proxies requests to WebLogic Server based on a configuration that you specify. You
can proxy requests based on either the URL of the request or a portion of the URL. This is called
proxying by path.

You can also proxy a request based on the MIME type of the requested file, which called proxying
by file extension.

You can also enable both methods. If you do enable both methoda and a request matches both
criteria, the request is proxied by path.

You can also specify additional parameters for each of these types of requests that define
additional behavior of the plug-in. For more information, see “Installing and Configuring the
Microsoft Internet Information Server Plug-In” on page 4-3.

Cer t i f i ca t ions

Using Web Server Plug-Ins With WebLogic Server 4-3

Certifications
For the latest information on operating system and IIS version compatibility with the Microsoft
Internet Information Server Plug-In, see the platform support page in Supported Configurations
for WebLogic Platform 10.3.

Installing and Configuring the Microsoft Internet
Information Server Plug-In

To install the Microsoft Internet Information Server Plug-In:

1. Copy the iisproxy.dll file from the WL_HOME/server/plugin/win/32 or
WL_HOME/server/plugin/win/64 directory of your WebLogic Server installation (where
WL_HOME is the top-level directory for the WebLogic Platform and Server and contains the
WebLogic Server installation files into a convenient directory that is accessible to IIS). This
directory must also contain the iisproxy.ini file that you will create in step 4 Set the user
permissions for the iisproxy.dll file to include the name of the user who will be running IIS.
One way to do this is by right clicking on the iisproxy.dll file and selecting Permissions, then
adding the username of the person who will be running IIS.

2. If you want to configure proxying by file extension (MIME type) complete this step. (You
can configure proxying by path in addition to or instead of configuring by MIME type. See
step 3)

a. Start the Internet Information Service Manager by selecting it from the Start menu.

b. In the left panel of the Service Manager, select your website (the default is “Default Web
Site”).

http://e-docs.bea.com/platform/suppconfigs/configs103/103_over/overview.html

Ins ta l l i ng and Conf igur ing the M ic roso f t I IS P lug- In

4-4 Using Web Server Plug-Ins With WebLogic Server

c. Click the “Play” arrow in the toolbar to start.

d. Open the properties for the selected website by right-clicking the website selection in the
left panel and selecting Properties.

e. In the Properties panel, select the Home Directory tab, and click the Configuration button
in the Applications Settings section.

Ins ta l l i ng and Conf igur ing the M ic roso f t In te rnet In fo rmat i on Se rve r P lug- In

Using Web Server Plug-Ins With WebLogic Server 4-5

f. On the Mappings tab, click the Add button to add file types and configure them to be
proxied to WebLogic Server.

Ins ta l l i ng and Conf igur ing the M ic roso f t I IS P lug- In

4-6 Using Web Server Plug-Ins With WebLogic Server

g. In the Add dialog box, browse to find the “iisproxy.dll” file.

h. Set the Extension to the type of file that you want to proxy to WebLogic Server.

i. If you are configuring for IIS 6.0 or later, be sure to deselect the “Check that file exists”
check box. The behavior of this check has changed from earlier versions of IIS: it used to
check that the iisproxy.dll file exists; now it checks that files requested from the proxy
exist in the root directory of the Web server. If the check does not find the files there, the
iisproxy.dll file will not be allowed to proxy requests to the WebLogic Server.

j. In the Directory Security tab, set the Method exclusions as needed to create a secure
installation.

k. When you finish, click the OK button to save the configuration. Repeat this process for
each file type you want to proxy to WebLogic.

l. When you finish configuring file types, click the OK button to close the Properties panel.

Note: In the URL, any path information you add after the server and port is passed directly
to WebLogic Server. For example, if you request a file from IIS with the URL:

http://myiis.com/jspfiles/myfile.jsp

it is proxied to WebLogic Server with a URL such as

Ins ta l l i ng and Conf igur ing the M ic roso f t In te rnet In fo rmat i on Se rve r P lug- In

Using Web Server Plug-Ins With WebLogic Server 4-7

http://mywebLogic:7001/jspfiles/myfile.jsp

Note: To avoid out-of-process errors, do not deselect the "Cache ISAPI Applications"
check box.

3. If you want to configure proxying by path complete this step. (In addition to proxying by file
type, you can configure the Microsoft Internet Information Server Plug-In to serve files based
on their path by specifying some additional parameters in the iisproxy.ini file.) Proxying
by path takes precedence over proxying by MIME type.

You can also proxy multiple websites defined in IIS by path. For more information, see
“Proxying Requests from Multiple Virtual Websites to WebLogic Server” on page 4-9.

To configure proxying by path:

a. Start the Internet Information Service Manager by selecting it from the Start menu.

b. Place the iisforward.dll file in the same directory as the iisproxy.dll file and add
the iisforward.dll file as a filter service in IIS (WebSite Properties → ISAPI Filters
tab → Add the iisforward dll). Set the user permissions for the iisforward.dll file to
include the name of the user who will be running IIS. One way to do this is by right
clicking on the iisproxy.dll file and selecting Permissions, then adding the username of the
person who will be running IIS.

c. Register .wlforward as a special file type to be handled by iisproxy.dll in IIS.

d. Define the property WlForwardPath in iisproxy.ini. WlForwardPath defines the
path that is proxied to WebLogic Server, for example: WlForwardPath=/weblogic.

e. Set the PathTrim parameter to trim off the WlForwardPath when necessary. For
example, using

WlForwardPath=/weblogic
PathTrim=/weblogic

trims a request from IIS to Weblogic Server. Therefore, /weblogic/session is
changed to /session.

f. If you want requests that do not contain extra path information (in other words, requests
containing only a host name), set the DefaultFileName parameter to the name of the
welcome page of the Web Application to which the request is being proxied. The value of
this parameter is appended to the URL.

g. If you need to debug your application, set the Debug=ON parameter in iisproxy.ini. A
c:\tmp\iisforward.log is generated containing a log of the plug-in’s activity that you
can use for debugging purposes.

Ins ta l l i ng and Conf igur ing the M ic roso f t I IS P lug- In

4-8 Using Web Server Plug-Ins With WebLogic Server

4. In WebLogic Server, create the iisproxy.ini file.

The iisproxy.ini file contains name=value pairs that define configuration parameters
for the plug-in. The parameters are listed in “General Parameters for Web Server Plug-Ins”
on page 6-2.

Use the example iisproxy.ini file in this section (“Sample iisproxy.ini File” on
page 4-10) as a template for your iisproxy.ini file.

Note: Changes in the parameters will not go into effect until you restart the “IIS Admin
Service” (under services, in the control panel).

Oracle recommends that you locate the iisproxy.ini file in the same directory that
contains the iisproxy.dll file. You can also use other locations. If you place the file
elsewhere, note that WebLogic Server searches for iisproxy.ini in the following
directories, in the following order:

a. in the same directory where iisproxy.dll is located

b. in the home directory of the most recent version of WebLogic Server that is referenced in
the Windows Registry. (If WebLogic Server does not find the iisproxy.ini file in the
home directory, it continues looking in the Windows Registry for older versions of
WebLogic Server and looks for the iisproxy.ini file in the home directories of those
installations.)

c. in the directory c:\weblogic, if it exists

5. Define the WebLogic Server host and port number to which the Microsoft Internet
Information Server Plug-In proxies requests. Depending on your configuration, there are two
ways to define the host and port:

– If you are proxying requests to a single WebLogic Server, define the WebLogicHost
and WebLogicPort parameters in the iisproxy.ini file. For example:

WebLogicHost=localhost
WebLogicPort=7001

– If you are proxying requests to a cluster of WebLogic Servers, define the
WebLogicCluster parameter in the iisproxy.ini file. For example:

WebLogicCluster=myweblogic.com:7001,yourweblogic.com:7001

Where myweblogic.com and yourweblogic.com are instances of Weblogic Server
running in a cluster.

Proxy ing Requests f rom Mul t ip le V i r tua l Webs i tes to WebLog ic Se rve r

Using Web Server Plug-Ins With WebLogic Server 4-9

6. Optionally, enable HTTP tunneling by following the instructions for proxying by path (see
step 8 above), substituting the WebLogic Server host name and the WebLogic Server port
number, or the name of a WebLogic Cluster that you wish to handle HTTP tunneling requests.

a. If you are using weblogic.jar and the T3 protocol, set WlForwardPath to this URL
pattern:
WlForwardPath=*/HTTPClnt*

b. If you are using IIOP, which is the only protocol used by the WebLogic Server thin client,
wlclient.jar, set the value of WlForwardPath to */iiop*:
WlForwardPath=*/iiop*

You do not need to use the PathTrim parameter.

7. Set any additional parameters in the iisproxy.ini file. A complete list of parameters is
available in the appendix “General Parameters for Web Server Plug-Ins” on page 6-2.

8. If you are proxying servlets from IIS to WebLogic Server and you are not proxying by path,
read the section “Proxying Servlets from IIS to WebLogic Server” on page 4-13.

9. The installed version of IIS with its initial settings does not allow the iisproxy.dll. Use the
IIS Manager console to enable the Plug-In:

a. Open the IIS Manager console.

b. Select Web Service Extensions.

c. Set “All Unknown ISAPI Extensions” to Allowed.

Proxying Requests from Multiple Virtual Websites to
WebLogic Server

To proxy requests from multiple websites (defined as virtual directories in IIS) to WebLogic
Server:

1. Create a new directory for the virtual directories. This directory will contain dll and ini files
used to define the proxy.

2. Copy iisforward.dll to the directory you created in step1.

3. Register the iisforward.dll for each website with IIS.

Ins ta l l i ng and Conf igur ing the M ic roso f t I IS P lug- In

4-10 Using Web Server Plug-Ins With WebLogic Server

4. Create a file called iisforward.ini. Place this file in the same directory that contains
iisforward.dll. This file should contain the following entry for each virtual website
defined in IIS:

vhostN=websiteName:port
websiteName:port=dll_directory/iisproxy.ini

Where:

– N is an integer representing the virtual website. The first virtual website you define
should use the integer 1 and each subsequent website should increment this number by
1.

– websiteName is the name of the virtual website as registered with IIS.

– port is the port number where IIS listens for HTTP requests.

– dll_directory is the path to the directory you created in step 1.

For example:

vhost1=strawberry.com:7001
strawberry.com:7001=c:\strawberry\iisproxy.ini
vhost2=blueberry.com:7001
blueberry.com:7001=c:\blueberry\iisproxy.ini
...

5. Create an iisproxy.ini file for the virtual eebsites, as described in step 4 in “Proxying
Requests”. Copy this iispoxy.ini file to the directory you created in step 1.

6. Copy iisproxy.dll to the directory you created in step 1.

7. In IIS, set the value for the Application Protection option to high (isolated). If the Application
Protection option is set to Medium(pooled), the iisproxy.dll that registered as the first website
will always be invoked. In this event, all the requests will be proxied to the same WebLogic
Server instances defined in the iisproxy.ini of the first website.

Sample iisproxy.ini File
Here is a sample iisproxy.ini file for use with a single, non-clustered WebLogic Server.
Comment lines are denoted with the “#” character.

This file contains initialization name/value pairs

for the IIS/WebLogic plug-in.

WebLogicHost=localhost

WebLogicPort=7001

Creat ing ACLs Through I IS

Using Web Server Plug-Ins With WebLogic Server 4-11

ConnectTimeoutSecs=20

ConnectRetrySecs=2

Here is a sample iisproxy.ini file with clustered WebLogic Servers. Comment lines are
denoted with the “#” character.

This file contains initialization name/value pairs

for the IIS/WebLogic plug-in.

WebLogicCluster=myweblogic.com:7001,yourweblogic.com:7001

ConnectTimeoutSecs=20

ConnectRetrySecs=2

Note: If you are using SSL between the plug-in and WebLogic Server, the port number should
be defined as the SSL listen port.

Creating ACLs Through IIS
ACLs will not work through the Microsoft Internet Information Server Plug-In if the
Authorization header is not passed by IIS. Use the following information to ensure that the
Authorization header is passed by IIS.

When using Basic Authentication, the user is logged on with local log-on rights. To enable the
use of Basic Authentication, grant each user account the Log On Locally user right on the IIS
server. Two problems may result from Basic Authentication's use of local logon:

If the user does not have local logon rights, Basic Authentication does not work even if the
FrontPage, IIS, and Windows NT configurations appear to be correct.

A user who has local log-on rights and who can obtain physical access to the host
computer running IIS will be permitted to start an interactive session at the console.

To enable Basic Authentication, in the Directory Security tab of the console, ensure that the
Allow Anonymous option is “on” and all other options are “off”.

Setting Up Perimeter Authentication
Use perimeter authentication to secure your WebLogic Server applications that are accessed via
the Microsoft Internet Information Server Plug-In.

A WebLogic Identity Assertion Provider authenticates tokens from outside systems that access
your WebLogic Server application, including users who access your WebLogic Server

Ins ta l l i ng and Conf igur ing the M ic roso f t I IS P lug- In

4-12 Using Web Server Plug-Ins With WebLogic Server

application through the Microsoft Internet Information Server Plug-In. Create an Identity
Assertion Provider that will safely secure your Plug-In as follows:

1. Create a custom Identity Assertion Provider on your WebLogic Server application. See How
to Develop a Custom Identity Assertion Provider in Developing Security Providers for
WebLogic Server.

2. Configure the custom Identity Assertion Provider to support the "Cert" token type and make
it the active token type. See How to Create New Token Types in Developing Security
Providers for WebLogic Server.

3. Set the clientCertProxy attribute to True in the web.xml deployment descriptor file for the
Web application (or, if using a cluster, optionally set the Client Cert Proxy Enabled
attribute to true for the whole cluster on the Administration Console
Cluster-->Configuration-->General tab). See context-param in Developing Web Applications
for WebLogic Server.

4. Once you have set clientCertProxy, be sure to use a connection filter to ensure that
WebLogic Server accepts connections only from the machine on which the Microsoft Internet
Information Server Plug-In is running. See Using Network Connection Filters in
Programming WebLogic Security.

5. Web server plug-ins require a trusted Certificate Authority file in order to use SSL between
the plug-in and WebLogic Server. Use Sun Microsystems' keytool utility to export a trusted
Certificate Authority file from the DemoTrust.jks keystore file that resides in
BEA_HOME/wlserver_10.3/server/lib.

a. To extract the wlsdemoca file, for example, use the command:
keytool -export -file trustedcafile.der -keystore DemoTrust.jks -alias
wlsdemoca

Change the alias name to obtain a different trusted CA file from the keystore.

To look at all of the keystore's trusted CA files, use:
keytool -list -keystore DemoTrust.jks

Press enter if prompted for password.

b. To convert the Certificate Authority file to pem format: java utils.der2pem
trustedcafile.der

See Identity Assertion Providers in Developing Security Providers for WebLogic Server for more
information about Identity Assertion Providers.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/dvspisec/ia.html#ia400
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/dvspisec/ia.html#ia400
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/dvspisec/ia.html#ia121
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webapp/web_xml.html#contextparam
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/security/con_filtr.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/dvspisec/ia.html

Using SSL w i th the Mic roso f t In te rnet In fo rmat i on Se rve r P lug- In

Using Web Server Plug-Ins With WebLogic Server 4-13

Using SSL with the Microsoft Internet Information Server
Plug-In

You can use the Secure Sockets Layer (SSL) protocol to protect the connection between
WebLogic Server and the Microsoft Internet Information Server Plug-In. The SSL protocol
provides confidentiality and integrity to the data passed between the Microsoft Internet
Information Server Plug-In and WebLogic Server.

The Microsoft Internet Information Server Plug-In does not use the transport protocol (http or
https) to determine whether the SSL protocol will be used to protect the connection between the
proxy plug-in and the Microsoft Internet Information Server. In order to use the SSL protocol
with the Microsoft Internet Information Server Plug-In, configure the WebLogic Server instance
receiving the proxied requests to use the SSL protocol. The port on the WebLogic Server that is
configured for secure SSL communication is used by the Microsoft Internet Information Server
Plug-In to communicate with the Microsoft Internet Information Server.

To use the SSL protocol between Microsoft Internet Information Server Plug-In and WebLogic
Server:

1. Configure WebLogic Server for SSL. For more information, see Configuring SSL.

2. Configure the WebLogic Server SSL listen port. For more information, see Configuring SSL.

3. Set the WebLogicPort parameter in the iisproxy.ini file to the listen port configured in
step 2

4. Set the SecureProxy parameter in the iisproxy.ini file to ON.

5. Set additional parameters in the iisproxy.ini file that define the SSL connection. For a
complete list of parameters, see “SSL Parameters for Web Server Plug-Ins” on page 6-14.

For example:

WebLogicHost=myweblogic.com

WebLogicPort=7002

SecureProxy=ON

Proxying Servlets from IIS to WebLogic Server
You can proxy servlets by path if the iisforward.dll is registered as a filter. You would then
invoke your servlet with a URL similar to the following:

http://IISserver/weblogic/myServlet

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html

Ins ta l l i ng and Conf igur ing the M ic roso f t I IS P lug- In

4-14 Using Web Server Plug-Ins With WebLogic Server

To proxy servlets if iisforward.dll is not registered as a filter, you must configure servlet
proxying by file type.To proxy servlets by file type:

1. Register an arbitrary file type (extension) with IIS to proxy the request to the WebLogic
Server, as described in step 2 under “Installing and Configuring the Microsoft Internet
Information Server Plug-In” on page 4-3.

2. Register your servlet in the appropriate Web Application. For more information on registering
servlets, see Creating and Configuring Servlets.

3. Invoke your servlet with a URL formed according to this pattern:
http://www.myserver.com/virtualName/anyfile.ext

where virtualName is the URL pattern defined in the <servlet-mapping> element of
the Web Application deployment descriptor (web.xml) for this servlet and ext is a file
type (extension) registered with IIS for proxying to WebLogic Server. The anyfile part of
the URL is ignored in this context.

Note:

– If the image links called from the servlet are part of the Web Application, you must
also proxy the requests for the images to WebLogic Server by registering the
appropriate file types (probably .gif and .jpg) with IIS. You can, however, choose to
serve these images directly from IIS if desired.

– If the servlet being proxied has links that call other servlets, then these links must also
be proxied to WebLogic Server, conforming to the pattern described in step 3.

Testing the Installation
After you install and configure the Microsoft Internet Information Server Plug-In, follow these
steps for deployment and testing:

1. Make sure WebLogic Server and IIS are running.

2. Save a JSP file into the document root of the default Web Application.

3. Open a browser and set the URL to the IIS + filename.jsp as shown in this example:

http://myii.server.com/filename.jsp

If filename.jsp is displayed in your browser, the plug-in is functioning.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webapp/configureservlet.html

Connect ion E r ro rs and C luste r ing Fa i l ove r

Using Web Server Plug-Ins With WebLogic Server 4-15

Connection Errors and Clustering Failover
When the Microsoft Internet Information Server Plug-In attempts to connect to WebLogic
Server, the plug-in uses several configuration parameters to determine how long to wait for
connections to the WebLogic Server host, and, after a connection is established, how long the
plug-in waits for a response. If the plug-in cannot connect or does not receive a response, the
plug-in attempts to connect and sends the request to other WebLogic Servers in the cluster. If the
connection fails or there is no response from any WebLogic Server instance in the cluster, an error
message is sent.

Figure 4-1 “Connection Failover” on page 4-17 demonstrates how the plug-in handles failover.

Possible Causes of Connection Failures
Failure of the WebLogic Server host to respond to a connection request could indicate problems
with the host machine, networking problems, or other server failures.

Failure of any WebLogic Server instance in the cluster to respond, could indicate that WebLogic
Server is not running or is unavailable, a hung server, a database problem, or other application
failure.

Failover with a Single, Non-Clustered WebLogic Server
If you are running only a single WebLogic Server, the plug-in only attempts to connect to the
server defined with the WebLogicHost parameter. If the attempt fails, an HTTP 503 error
message is returned. The plug-in continues trying to connect to WebLogic Server until
ConnectTimeoutSecs is exceeded.

The Dynamic Server List
When you specify a list of WebLogic Servers in the WebLogicCluster parameter, the plug-in
uses that list as a starting point for load balancing among the members of the cluster. After the
first request is routed to one of these servers, a dynamic server list is returned containing an
updated list of servers in the cluster. The updated list adds any new servers in the cluster and
deletes any that are no longer part of the cluster or that have failed to respond to requests. This
list is updated automatically with the HTTP response when a change in the cluster occurs.

Ins ta l l i ng and Conf igur ing the M ic roso f t I IS P lug- In

4-16 Using Web Server Plug-Ins With WebLogic Server

Failover, Cookies, and HTTP Sessions
When a request contains a session information stored in a cookie, in the POST data, or by URL
encoding, the session ID contains a reference to the specific server in which the session was
originally established (called the primary server) and a reference to an additional server where
the original session is replicated (called the secondary server). A request containing a cookie
attempts to connect to the primary server. If that attempt fails, the request is routed to the
secondary server. If both the primary and secondary servers fail, the session is lost and the plug-in
attempts to make a fresh connection to another server in the dynamic cluster list. For more
information see Figure 4-1 “Connection Failover” on page 4-17.

Note: If the POST data is larger than 64K, the plug-in will not parse the POST data to obtain
the session ID. Therefore, if you store the session ID in the POST data, the plug-in cannot
route the request to the correct primary or secondary server, resulting in possible loss of
session data.

Connect ion E r ro rs and C luste r ing Fa i l ove r

Using Web Server Plug-Ins With WebLogic Server 4-17

Figure 4-1 Connection Failover

In the preceding graphic, the Maximum number of retries allowed in the red loop is equal to
ConnectTimeoutSecs ÷ ConnectRetrySecs.

Ins ta l l i ng and Conf igur ing the M ic roso f t I IS P lug- In

4-18 Using Web Server Plug-Ins With WebLogic Server

Using Web Server Plug-Ins With WebLogic Server 6-1

C H A P T E R 5

Proxying Requests to Another Web
Server

The following sections discuss how to proxy HTTP requests to another Web server:

“Overview of Proxying Requests to Another Web Server” on page 5-1

“Setting Up a Proxy to a Secondary Web Server” on page 5-1

“Sample Deployment Descriptor for the Proxy Servlet” on page 5-3

Overview of Proxying Requests to Another Web Server
When you use WebLogic Server as your primary Web server, you may also want to configure
WebLogic Server to pass on, or proxy, certain requests to a secondary Web server, such as
Apache or Microsoft Internet Information Server. Any request that gets proxied is redirected to a
specific URL.You can even proxy to another Web server on a different machine.You proxy
requests based on the URL of the incoming request.

The HttpProxyServlet (provided as part of the distribution) takes an HTTP request, redirects
it to the proxy URL, and sends the response to the client's browser back through WebLogic
Server. To use the HttpProxyServlet, you must configure it in a Web Application and deploy
that Web Application on the WebLogic Server that is redirecting requests.

Setting Up a Proxy to a Secondary Web Server
To set up a proxy to a secondary HTTP server:

Proxy ing Requests t o Another Web Serve r

6-2 Using Web Server Plug-Ins With WebLogic Server

1. Register the proxy servlet in your Web Application deployment descriptor (see “Sample
web.xml for Use with ProxyServlet” on page 5-3). The Web Application must be the default
Web Application of the server instance that is responding to requests. The class name for the
proxy servlet is weblogic.servlet.proxy.HttpProxyServlet. For more information,
see Developing Web Applications, Servlets, and JSPs for WebLogic Server.

2. Define an initialization parameter for the ProxyServlet with a <param-name> of
redirectURL and a <param-value> containing the URL of the server to which proxied
requests should be directed.

3. Optionally, define the following <KeyStore> initialization parameters to use two-way SSL
with your own identity certificate and key. If no <KeyStore> is specified in the deployment
descriptor, the proxy will assume one-way SSL.

– <KeyStore> – The key store location in your Web application.

– <KeyStoreType> – The key store type. If it is not defined, the default type will be
used instead.

– <PrivateKeyAlias> – The private key alias.

– <KeyStorePasswordProperties> – A property file in your Web application that
defines encrypted passwords to access the key store and private key alias. The file
contents looks like this:
KeyStorePassword={3DES}i4+50LCKenQO8BBvlsXTrg\=\=
PrivateKeyPassword={3DES}a4TcG4mtVVBRKtZwH3p7yA\=\=

You must use the weblogic.security.Encrypt command-line utility to encrypt the
password. For more information on the Encrypt utility, as well as the CertGen, and
der2pem utilities, see Using the WebLogic Server Java Utilities in the WebLogic Server
Command Reference.

4. Map the ProxyServlet to a <url-pattern>. Specifically, map the file extensions you wish
to proxy, for example *.jsp, or *.html. Use the <servlet-mapping> element in the
web.xml Web Application deployment descriptor.

If you set the <url-pattern> to “/”, then any request that cannot be resolved by
WebLogic Server is proxied to the remote server. However, you must also specifically map
the following extensions: *.jsp, *.html, and *.html if you want to proxy files ending
with those extensions.

5. Deploy the Web Application on the WebLogic Server instance that redirects incoming
requests.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webapp/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/admin_ref/utils.html#encrypt
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/admin_ref/utils.html#certgen
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/admin_ref/utils.html#der2pem
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/admin_ref/utils.html

Sample Dep loyment Descr ip to r f o r the Proxy Se rv le t

Using Web Server Plug-Ins With WebLogic Server 6-3

Sample Deployment Descriptor for the Proxy Servlet
The following is an sample of a Web Applications deployment descriptor for using the Proxy
Servlet.

Listing 5-1 Sample web.xml for Use with ProxyServlet

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.

 //DTD Web Application 2.3//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>

<servlet>

<servlet-name>ProxyServlet</servlet-name>

<servlet-class>weblogic.servlet.proxy.HttpProxyServlet</servlet-class>

<init-param>

<param-name>redirectURL</param-name>

<param-value>server:port</param-value>

</init-param>

<init-param>

<param-name>KeyStore</param-name>

<param-value>/mykeystore</param-value>

</init-param>

<init-param>

<param-name>KeyStoreType</param-name>

<param-value>jks</param-value>

</init-param>

<init-param>

<param-name>PrivateKeyAlias</param-name>

<param-value>passalias</param-value>

</init-param>

<init-param>

<param-name>KeyStorePasswordProperties</param-name>

<param-value>mykeystore.properties</param-value>

</init-param>

Proxy ing Requests t o Another Web Serve r

6-4 Using Web Server Plug-Ins With WebLogic Server

</servlet>

<servlet-mapping>

<servlet-name>ProxyServlet</servlet-name>

<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>ProxyServlet</servlet-name>

<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>ProxyServlet</servlet-name>

<url-pattern>*.htm</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>ProxyServlet</servlet-name>

<url-pattern>*.html</url-pattern>

</servlet-mapping>

</web-app>

Using Web Server Plug-Ins With WebLogic Server 7-1

C H A P T E R 6

Parameters for Web Server Plug-Ins

The following sections describe the parameters that you use to configure the Apache and
Microsoft IIS Web server plug-ins:

“Entering Parameters in Web Server Plug-In Configuration Files” on page 6-1

“General Parameters for Web Server Plug-Ins” on page 6-2

“SSL Parameters for Web Server Plug-Ins” on page 6-14

Entering Parameters in Web Server Plug-In
Configuration Files

You enter the parameters for each Web server plug-in in special configuration files. Each Web
server has a different name for this configuration file and different rules for formatting the file.
For details, see the following sections on each plug-in:

“Installing and Configuring the Apache HTTP Server Plug-In” on page 3-1

“Installing and Configuring the Microsoft IIS Plug-In” on page 4-1

Paramete rs fo r Web Serve r P lug- Ins

7-2 Using Web Server Plug-Ins With WebLogic Server

General Parameters for Web Server Plug-Ins
Parameters are case sensitive.

Table 6-1 General Parameters for Web Service Plug-Ins

Parameter Default Description

WebLogicHost

(Required when proxying to a
single WebLogic Server.)

none WebLogic Server host (or virtual host name as defined in
WebLogic Server) to which HTTP requests should be
forwarded.

If you are using a WebLogic cluster, use the
WebLogicCluster parameter instead of WebLogicHost.

WebLogicPort

(Required when proxying to a
single WebLogic Server.)

none Port at which the WebLogic Server host is listening for
connection requests from the plug-in (or from other servers). (If
you are using SSL between the plug-in and WebLogic Server,
set this parameter to the SSL listen port (see Configuring the SSL
Protocol) and set the SecureProxy parameter to ON).

If you are using a WebLogic Cluster, use the
WebLogicCluster parameter instead of WebLogicPort.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html

Genera l Pa ramete rs fo r Web Serve r P lug- Ins

Using Web Server Plug-Ins With WebLogic Server 7-3

WebLogicCluster

(Required when proxying to a
cluster of WebLogic Servers.)

none List of WebLogic Servers that can be used for load balancing.
The server or cluster list is a list of host:port entries. If a mixed
set of clusters and single servers is specified, the dynamic list
returned for this parameter will return only the clustered servers.
The method of specifying the parameter, and the required format
vary by plug-in. See the examples in:
• Installing and Configuring the Microsoft Internet

Information Server (ISAPI) Plug-In
• Installing and Configuring the Apache HTTP Server

Plug-In
If you are using SSL between the plug-in and WebLogic Server,
set the port number to the SSL listen port (see Configuring the
SSL Protocol) and set the SecureProxy parameter to ON.

The plug-in does a simple round-robin between all available
servers. The server list specified in this property is a starting
point for the dynamic server list that the server and plug-in
maintain. WebLogic Server and the plug-in work together to
update the server list automatically with new, failed, and
recovered cluster members.

You can disable the use of the dynamic cluster list by setting the
DynamicServerList parameter to OFF

The plug-in directs HTTP requests containing a cookie,
URL-encoded session, or a session stored in the POST data to
the server in the cluster that originally created the cookie.

Table 6-1 General Parameters for Web Service Plug-Ins

Parameter Default Description

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/plugins/isapi.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/plugins/apache.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html

Paramete rs fo r Web Serve r P lug- Ins

7-4 Using Web Server Plug-Ins With WebLogic Server

PathTrim null As per the RFC specification, generic syntax for URL is:
[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILEN
AME};{PATH_PARAMS}/{QUERY_STRING}...

PathTrim specifies the string trimmed by the plug-in from the
{PATH}/{FILENAME} portion of the original URL, before the
request is forwarded to WebLogic Server. For example, if the
URL
http://myWeb.server.com/weblogic/foo

is passed to the plug-in for parsing and if PathTrim has been
set to strip off /weblogic before handing the URL to
WebLogic Server, the URL forwarded to WebLogic Server is:
http://myWeb.server.com:7001/foo

Note that if you are newly converting an existing third-party
server to proxy requests to WebLogic Server using the plug-in,
you will need to change application paths to /foo to include
weblogic/foo. You can use PathTrim and PathPrepend
in combination to change this path.

PathPrepend null As per the RFC specification, generic syntax for URL is:
[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILEN
AME};{PATH_PARAMS}/{QUERY_STRING}...

PathPrepend specifies the path that the plug-in prepends to
the {PATH} portion of the original URL, after PathTrim is
trimmed and before the request is forwarded to WebLogic
Server.

Note that if you need to append File Name, use
DefaultFileName plug-in parameter instead of
PathPrepend.

ConnectTimeoutSecs 10 Maximum time in seconds that the plug-in should attempt to
connect to the WebLogic Server host. Make the value greater
than ConnectRetrySecs. If ConnectTimeoutSecs
expires without a successful connection, even after the
appropriate retries (see ConnectRetrySecs), an HTTP
503/Service Unavailable response is sent to the client.

You can customize the error response by using the ErrorPage
parameter.

Table 6-1 General Parameters for Web Service Plug-Ins

Parameter Default Description

Genera l Pa ramete rs fo r Web Serve r P lug- Ins

Using Web Server Plug-Ins With WebLogic Server 7-5

ConnectRetrySecs 2 Interval in seconds that the plug-in should sleep between
attempts to connect to the WebLogic Server host (or all of the
servers in a cluster). Make this number less than the
ConnectTimeoutSecs. The number of times the plug-in tries
to connect before returning an HTTP 503/Service
Unavailable response to the client is calculated by dividing
ConnectTimeoutSecs by ConnectRetrySecs.

To specify no retries, set ConnectRetrySecs equal to
ConnectTimeoutSecs. However, the plug-in attempts to
connect at least twice.

You can customize the error response by using the ErrorPage
parameter.

Table 6-1 General Parameters for Web Service Plug-Ins

Parameter Default Description

Paramete rs fo r Web Serve r P lug- Ins

7-6 Using Web Server Plug-Ins With WebLogic Server

Debug OFF Sets the type of logging performed for debugging operations.
The debugging information is written to the
/tmp/wlproxy.log file on UNIX systems and
c:\TEMP\wlproxy.log on Windows NT/2000 systems.
Override this location and filename by setting the WLLogFile
parameter to a different directory and file. Ensure that the tmp
or TEMP directory has write permission assigned to the user who
is logged in to the server. Set any of the following logging
options (HFC,HTW,HFW, and HTC options may be set in
combination by entering them separated by commas, for
example “HFC,HTW”):

ON
The plug-in logs informational and error
messages.

OFF
No debugging information is logged.

HFC
The plug-in logs headers from the client,
informational, and error messages.

HTW
The plug-in logs headers sent to WebLogic Server,
and informational and error messages.

HFW
The plug-in logs headers sent from WebLogic
Server, and informational and error messages.

HTC
The plug-in logs headers sent to the client,
informational messages, and error messages.

ERR
Prints only the Error messages in the plug-in.

ALL
The plug-in logs headers sent to and from the
client, headers sent to and from WebLogic Server,
information messages, and error messages.

Table 6-1 General Parameters for Web Service Plug-Ins

Parameter Default Description

Genera l Pa ramete rs fo r Web Serve r P lug- Ins

Using Web Server Plug-Ins With WebLogic Server 7-7

WLLogFile See the
Debug
parameter

Specifies path and file name for the log file that is generated
when the Debug parameter is set to ON. You must create this
directory before setting this parameter.

WLDNSRefreshInterval 0 (Lookup
once,
during
startup)

Only applies to NSAPI and Apache.

If defined in the proxy configuration, specifies number of
seconds interval at which WebLogic Server refreshes DNS
name to IP mapping for a server. This can be used in the event
that a WebLogic Server instance is migrated to a different IP
address, but the DNS name for that server's IP remains the same.
In this case, at the specified refresh interval the DNS<->IP
mapping will be updated.

WLTempDir See the
Debug
parameter

Specifies the directory where a wlproxy.log will be created.
If the location fails, the Plug-In resorts to creating the log file
under C:/temp in Windows and /tmp in all Unix platforms.

Also specifies the location of the _wl_proxy directory for post
data files.

When both WLTempDir and WLLogFile are set, WLLogFile
will override as to the location of wlproxy.log. WLTempDir
will still determine the location of _wl_proxy directory.

DebugConfigInfo OFF Enables the special query parameter
“__WebLogicBridgeConfig”. Use it to get details about
configuration parameters from the plug-in.

For example, if you enable “__WebLogicBridgeConfig”
by setting DebugConfigInfo and then send a request that
includes the query string ?__WebLogicBridgeConfig, then
the plug-in gathers the configuration information and run-time
statistics and returns the information to the browser. The plug-in
does not connect to WebLogic Server in this case.

This parameter is strictly for debugging and the format of the
output message can change with releases. For security purposes,
keep this parameter turned OFF in production systems.

Table 6-1 General Parameters for Web Service Plug-Ins

Parameter Default Description

Paramete rs fo r Web Serve r P lug- Ins

7-8 Using Web Server Plug-Ins With WebLogic Server

StatPath

(Not available for the Microsoft
Internet Information Server
Plug-In)

false If set to true, the plug-in checks the existence and permissions
of the translated path (“Proxy-Path-Translated”) of the request
before forwarding the request to WebLogic Server.

If the file does not exist, an HTTP 404 File Not Found
response is returned to the client. If the file exists but is not
world-readable, an HTTP 403/Forbidden response is
returned to the client. In either case, the default mechanism for
the Web server to handle these responses fulfills the body of the
response. This option is useful if both the WebLogic Server Web
Application and the Web Server have the same document root.

You can customize the error response by using the ErrorPage
parameter.

ErrorPage none You can create your own error page that is displayed when your
Web server is unable to forward requests to WebLogic Server.

WLSocketTimeoutSecs 2 (must
be
greater
than 0)

Set the timeout for the socket while connecting, in seconds.

WLIOTimeoutSecs (new
name for
HungServerRecoverSecs)

300 Defines the amount of time the plug-in waits for a response to a
request from WebLogic Server. The plug-in waits for
HungServerRecoverSecs for the server to respond and then
declares that server dead, and fails over to the next server. The
value should be set to a very large value. If the value is less than
the time the servlets take to process, then you may see
unexpected results.

Minimum value: 10
Maximum value: Unlimited

Idempotent ON When set to ON and if the servers do not respond within
WLIOTimeoutSecs (new name for
HungServerRecoverSecs), the plug-ins fail over.

If set to “OFF” the plug-ins do not fail over. If you are using the
Apache HTTP Server you can set this parameter differently for
different URLs or MIME types.

Table 6-1 General Parameters for Web Service Plug-Ins

Parameter Default Description

Genera l Pa ramete rs fo r Web Serve r P lug- Ins

Using Web Server Plug-Ins With WebLogic Server 7-9

CookieName JSESSIO
NID

If you change the name of the WebLogic Server session cookie
in the WebLogic Server Web application, you need to change
the CookieName parameter in the plug-in to the same value.
The name of the WebLogic session cookie is set in the
WebLogic-specific deployment descriptor, in the
<session-descriptor> element.

DefaultFileName none If the URI is “/” then the plug-in performs the following steps:
1. Trims the path specified with the PathTrim parameter.
2. Appends the value of DefaultFileName.
3. Prepends the value specified with PathPrepend.

This procedure prevents redirects from WebLogic Server.

Set the DefaultFileName to the default welcome page of the
Web Application in WebLogic Server to which requests are
being proxied. For example, If the DefaultFileName is set to
welcome.html, an HTTP request like
“http://somehost/weblogic” becomes
“http://somehost/weblogic/welcome.html”. For
this parameter to function, the same file must be specified as a
welcome file in all the Web Applications to which requests are
directed. For more information, see “Configuring Welcome
Pages”.

Note for Apache users: If you are using Stronghold or Raven
versions, define this parameter inside of a Location block, and
not in an IfModule block.

MaxPostSize -1 Maximum allowable size of POST data, in bytes. If the
content-length exceeds MaxPostSize, the plug-in returns an
error message. If set to -1, the size of POST data is not checked.
This is useful for preventing denial-of-service attacks that
attempt to overload the server with POST data.

Table 6-1 General Parameters for Web Service Plug-Ins

Parameter Default Description

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webapp/weblogic_xml.html#session-descriptor
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webapp/configureservlet.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webapp/configureservlet.html

Paramete rs fo r Web Serve r P lug- Ins

7-10 Using Web Server Plug-Ins With WebLogic Server

MatchExpression

(Apache HTTP Server only)

none When proxying by MIME type, set the filename pattern inside
of an IfModule block using the MatchExpression
parameter.

Example when proxying by MIME type:
<IfModule mod_weblogic.c>
 MatchExpression *.jsp

WebLogicHost=myHost|paramName=value
</IfModule>

Example when proxying by path:
<IfModule mod_weblogic.c>
 MatchExpression /weblogic

WebLogicHost=myHost|paramName=value
</IfModule>

It is possible to define a new parameter for MatchExpression
using the following syntax:
MatchExpression *.jsp PathPrepend=/test
PathTrim=/foo

Table 6-1 General Parameters for Web Service Plug-Ins

Parameter Default Description

Genera l Pa ramete rs fo r Web Serve r P lug- Ins

Using Web Server Plug-Ins With WebLogic Server 7-11

FileCaching ON When set to ON, and the size of the POST data in a request is
greater than 2048 bytes, the POST data is first read into a
temporary file on disk and then forwarded to the WebLogic
Server in chunks of 8192 bytes. This preserves the POST data
during failover, allowing all necessary data to be repeated to the
secondary if the primary goes down.

Note that when FileCaching is ON, any client that tracks the
progress of the POST will see that the transfer has completed
even though the data is still being transferred between the
WebServer and WebLogic. So, if you want the progress bar
displayed by a browser during the upload to reflect when the
data is actually available on the WebLogic Server, you might not
want to have FileCaching ON.

When set to OFF and the size of the POST data in a request is
greater than 2048 bytes, the reading of the POST data is
postponed until a WebLogic Server cluster member is identified
to serve the request. Then the Plugin reads and immediately
sends the POST data to the WebLogic Server in chunks of 8192
bytes.

Note that turning FileCaching OFF limits failover. If the
WebLogic Server primary server goes down while processing
the request, the POST data already sent to the primary cannot be
repeated to the secondary.

Finally, regardless of how FileCaching is set, if the size of the
POST data is 2048 bytes or less the plugin will read the data into
memory and use it if needed during failover to repeat to the
secondary.

FilterPriorityLevel

(Microsoft Internet Information
Server only)

2 The values for this parameter are 0 (low), 1 (medium), and 2
(high). The default value is 2. This priority should be put in
iisforward.ini file. This property is used to set the priority level
for the iisforward.dll filter in IIS. Priority level is used by IIS to
decide which filter will be invoked first, in case multiple filters
match the incoming request.

Table 6-1 General Parameters for Web Service Plug-Ins

Parameter Default Description

Paramete rs fo r Web Serve r P lug- Ins

7-12 Using Web Server Plug-Ins With WebLogic Server

WLExcludePathOrMimeTyp
e

none This parameter allows you make exclude certain requests from
proxying.

This parameter can be defined locally at the Location tag level
as well as globally. When the property is defined locally, it does
not override the global property but defines a union of the two
parameters.

WlForwardPath

(Microsoft Internet Information
Server only)

null If WlForwardPath is set to "/" all requests are proxied. To
forward any requests starting with a particular string, set
WlForwardPath to the string. For example, setting
WlForwardPath to /weblogic forwards all requests starting
with /weblogic to Weblogic Server.

This parameter is required if you are proxying by path. You can
set multiple strings by separating the strings with commas. For
example: WlForwardPath=/weblogic,/bea.

KeepAliveSecs 20 The length of time after which an inactive connection between
the plug-in and WebLogic Server is closed. You must set
KeepAliveEnabled to true (ON when using the Apache
plug-in) for this parameter to be effective.

The value of this parameter must be less than or equal to the
value of the Duration field set in the Administration Console on
the Server/HTTP tab, or the value set on the server Mbean
with the KeepAliveSecs attribute.

KeepAliveEnabled true
(Microsoft
IIS
plug-in)
ON
(Apache
plug-in)

Enables pooling of connections between the plug-in and
WebLogic Server.
Valid values for the Microsoft IIS plug-ins are true and
false.
Valid values for the Apache plug-in are ON and OFF.

Table 6-1 General Parameters for Web Service Plug-Ins

Parameter Default Description

Genera l Pa ramete rs fo r Web Serve r P lug- Ins

Using Web Server Plug-Ins With WebLogic Server 7-13

QueryFromRequest

(Apache HTTP Server only)

OFF When set to ON, specifies that the Apache plug-in use
(request_rec *)r->the request
to pass the query string to WebLogic Server. (For more
information, see your Apache documentation.) This behavior is
desirable in the following situations:
• When a Netscape version 4.x browser makes requests that

contain spaces in the query string
• If you are using Raven Apache 1.5.2 on HP

When set to OFF, the Apache plug-in uses
(request_rec *)r->args to pass the query string to
WebLogic Server.

MaxSkipTime 10 If a WebLogic Server listed in either the WebLogicCluster
parameter or a dynamic cluster list returned from WebLogic
Server fails, the failed server is marked as “bad” and the plug-in
attempts to connect to the next server in the list.

MaxSkips sets the amount of time after which the plug-in will
retry the server marked as “bad.” The plug-in attempts to
connect to a new server in the list each time a unique request is
received (that is, a request without a cookie).

DynamicServerList ON When set to OFF, the plug-in ignores the dynamic cluster list
used for load balancing requests proxied from the plug-in and
only uses the static list specified with the WebLogicCluster
parameter. Normally this parameter should remain set to ON.

There are some implications for setting this parameter to OFF:
• If one or more servers in the static list fails, the plug-in could

waste time trying to connect to a dead server, resulting in
decreased performance.

• If you add a new server to the cluster, the plug-in cannot
proxy requests to the new server unless you redefine this
parameter. WebLogic Server automatically adds new
servers to the dynamic server list when they become part of
the cluster.

Table 6-1 General Parameters for Web Service Plug-Ins

Parameter Default Description

Paramete rs fo r Web Serve r P lug- Ins

7-14 Using Web Server Plug-Ins With WebLogic Server

SSL Parameters for Web Server Plug-Ins
Notes: SCG Certificates are not supported for use with WebLogic Server Proxy Plug-Ins.

Non-SCG certificates work appropriately and allow SSL communication between
WebLogic Server and the plug-in.

KeyStore-related initialization parameters are not supported for use with WebLogic
Server Proxy Plug-Ins.

WLProxySSL OFF Set this parameter to ON to maintain SSL communication
between the plug-in and WebLogic Server when the following
conditions exist:
• An HTTP client request specifies the HTTPS protocol
• The request is passed through one or more proxy servers

(including the WebLogic Server proxy plug-ins)
• The connection between the plug-in and WebLogic Server

uses the HTTP protocol

When WLProxySSL is set to ON, the location header returned
to the client from WebLogic Server specifies the HTTPS
protocol.

WLLocalIP none Defines the IP address to bind to when the plug-in connects to a
WebLogic Server instance running on a multihomed machine.

If WLLocalIP is not set, a random IP address on the
multi-homed machine is used.

Table 6-1 General Parameters for Web Service Plug-Ins

Parameter Default Description

SSL Paramete rs fo r Web Serve r P lug- Ins

Using Web Server Plug-Ins With WebLogic Server 7-15

Parameters are case sensitive.

Table 6-2 SSL Parameters for Web Server Plug-Ins

Parameter Default Description

EnforceBasicConstra
ints

Strong This parameter closes a security hole which existed with SSL
certificate validation where certificate chains with invalid V3 CA
certificates would not be properly rejected. This allowed certificate
chains with invalid intermediate CA certificates, rooted with a valid
CA certificate to be trusted. X509 V3 CA certificates are required to
contain the BasicConstraints extension, marked as being a CA, and
marked as a critical extension. This checking protects against non-CA
certificates masquerading as intermediate CA certificates.
The levels of enforcement are as follows:
OFF
This level entirely disables enforcement and is not recommended.
Most current commercial CA certificates should work under the
default STRONG setting.
EnforceBasicConstraints=off

EnforceBasicConstraints=false

STRONG
Default. The BasicConstraints for V3 CA certificates are checked and
the certificates are verified to be CA certificates.
EnforceBasicConstraints=strong

EnforceBasicConstraints=true

STRICT
This level does the same checking as the STRONG level, but in
addition it also strictly enforces IETF RFC 2459 which specifies the
BasicConstraints for CA certificates also must be marked as
"critical". This is not the default setting because a number of current
commercially available CA certificates don't conform to RFC 2459
and don't mark the BasicConstraints as critical. Set this if you want to
strict conformance to RFC 2459.
EnforceBasicConstraints=strict

Paramete rs fo r Web Serve r P lug- Ins

7-16 Using Web Server Plug-Ins With WebLogic Server

SecureProxy OFF Set this parameter to ON to enable the use of the SSL protocol for all
communication between the plug-in and WebLogic Server.
Remember to configure a port on the corresponding WebLogic Server
for the SSL protocol before defining this parameter.

This parameter may be set at two levels: in the configuration for the
main server and—if you have defined any virtual hosts—in the
configuration for the virtual host. The configuration for the virtual
host inherits the SSL configuration from the configuration of the main
server if the setting is not overridden in the configuration for the
virtual host.

TrustedCAFile none Name of the file that contains the digital certificates for the trusted
certificate authorities for the plug-in. This parameter is required if the
SecureProxy parameter is set to ON.

The filename must include the full directory path of the file.

RequireSSLHostMatch true Determines whether the host name to which the plug-in is connecting
must match the Subject Distinguished Name field in the digital
certificate of the WebLogic Server to which the proxy plug-in is
connecting.

When specifying SecureProxy=ON and RequireSSLHostMatch=true
in the plug-in, then the value specified in the ListenAddress property
should exactly match the hostname value specified in the certificate.

When using the ExternalDNSName property for WebLogic Server
and setting SecureProxy=ON and RequireSSLHostMatch=true in the
plug-in, then the value specified in the ExternalDNSName property
should exactly match the hostname value specified in the certificate.

Table 6-2 SSL Parameters for Web Server Plug-Ins

Parameter Default Description

SSL Paramete rs fo r Web Serve r P lug- Ins

Using Web Server Plug-Ins With WebLogic Server 7-17

SSLHostMatchOID 22 The ASN.1 Object ID (OID) that identifies which field in the Subject
Distinguished Name of the peer digital certificate is to be used to
perform the host match comparison. The default for this parameter
corresponds to the CommonName field of the Subject Distinguished
Name. Common OID values are:
• Sur Name—23
• Common Name—22
• Email—13
• Organizational Unit—30
• Organization—29
• Locality—26

KeyStore none For generic proxy servlets, the key store location in a Web
application when using two-way SSL to create a user-defined
identity certificate and key.

KeyStoreType none The key store type when using two-way SSL with a generic
proxy servlet. If it is not defined, the default type will be used
instead.

PrivateKeyAlias none The private key alias when using two-way SSL with a generic
proxy servlet.

KeyStorePasswordPro
perties

none A property file in a Web application that defines encrypted passwords
to access the key store and private key alias when using two-way
SSL with a generic proxy servlet. The file contents looks like this:

KeyStorePassword={3DES}i4+50LCKenQO8BBvlsXTrg\=
\=
PrivateKeyPassword={3DES}a4TcG4mtVVBRKtZwH3p7yA
\=\=

You must use the weblogic.security.Encrypt command-line
utility to encrypt the password. For more information on the
Encrypt utility, as well as the CertGen, and der2pem utilities, see
Using the WebLogic Server Java Utilities in the WebLogic Server
Command Reference.

Table 6-2 SSL Parameters for Web Server Plug-Ins

Parameter Default Description

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/admin_ref/utils.html#encrypt
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/admin_ref/utils.html#certgen
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/admin_ref/utils.html#der2pem
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/admin_ref/utils.html

Paramete rs fo r Web Serve r P lug- Ins

7-18 Using Web Server Plug-Ins With WebLogic Server

	Oracle® WebLogic Server
	10g Release 3 (10.3)

	Oracle WebLogic Server Using Web Server Plug-Ins with WebLogic Server, 10g Release 3 (10.3)
	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	New and Changed Features in This Release

	Understanding Using Web Server Plug-Ins With WebLogic Server
	What Are Plug-Ins?
	Plug-Ins Included with WebLogic Server

	Installing and Configuring the Apache HTTP Server Plug-In
	Overview of the Apache HTTP Server Plug-In
	Keep-Alive Connections in Apache Version 2.0
	Proxying Requests
	Apache 2.2
	Certifications

	Installing the Apache HTTP Server Plug-In
	Installing the Apache HTTP Server Plug-In as a Dynamic Shared Object
	Support for Large Files in Apache 2.0

	Configuring the Apache HTTP Server Plug-In
	Editing the httpd.conf File
	Including a weblogic.conf File in the httpd.conf File
	Creating weblogic.conf Files
	Sample weblogic.conf Configuration Files
	Template for the Apache HTTP Server httpd.conf File

	Setting Up Perimeter Authentication
	Using SSL with the Apache Plug-In
	Configuring SSL Between the Apache HTTP Server Plug-In and WebLogic Server
	Issues with SSL-Apache Configuration

	Connection Errors and Clustering Failover
	Possible Causes of Connection Failures
	Tuning to Reduce Connection_Refused Errors
	Failover with a Single, Non-Clustered WebLogic Server
	The Dynamic Server List
	Failover, Cookies, and HTTP Sessions

	Installing and Configuring the Microsoft IIS Plug-In
	Overview of the Microsoft Internet Information Server Plug-In
	Connection Pooling and Keep-Alive
	Proxying Requests

	Certifications
	Installing and Configuring the Microsoft Internet Information Server Plug-In
	Proxying Requests from Multiple Virtual Websites to WebLogic Server
	Sample iisproxy.ini File

	Creating ACLs Through IIS
	Setting Up Perimeter Authentication
	Using SSL with the Microsoft Internet Information Server Plug-In
	Proxying Servlets from IIS to WebLogic Server
	Testing the Installation
	Connection Errors and Clustering Failover
	Possible Causes of Connection Failures
	Failover with a Single, Non-Clustered WebLogic Server
	The Dynamic Server List
	Failover, Cookies, and HTTP Sessions

	Proxying Requests to Another Web Server
	Overview of Proxying Requests to Another Web Server
	Setting Up a Proxy to a Secondary Web Server
	Sample Deployment Descriptor for the Proxy Servlet

	Parameters for Web Server Plug-Ins
	Entering Parameters in Web Server Plug-In Configuration Files
	General Parameters for Web Server Plug-Ins
	SSL Parameters for Web Server Plug-Ins

